Mercury Emissions Performance Test Report

Performed for National Lime Association

At the Western Lime Eden Facility Kiln 1 Exhaust Stack and Kiln 2 Exhaust Stack Eden, Wisconsin April 26 and 27, 2011

Platt Environmental Services, Inc.

Platt Environmental Services, Inc.

1520 Kensington Road, Suite 204 Oak Brook, IL 60523 630-521-9400 630-521-9494 fax

Mercury Emissions Performance Test Report

Performed for National Lime Association

At the Western Lime Eden Facility Kiln 1 Exhaust Stack and Kiln 2 Exhaust Stack Eden, Wisconsin April 26 and 27, 2011

Report Submittal Date: June 29, 2011

Prepared By

Platt Environmental Services, Inc.

Report No. M111707

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTION AND SUMMARY OF RESULTS	2
 3.0 TEST METHODOLOGY	5 5 6
4.0 TEST RESULTS SUMMARIES	7
5.0 OPERATING DATA	15
6.0 CONCLUSION AND CERTIFICATION	15
APPENDIX (AVAILABLE IN SEPARATE DOCUMENT UPON REQUEST TO NLA) Test Section Diagrams Sample Train Diagrams Calculation Nomenclature and Formulas Sample Analysis Data Spike Recovery Data NIST Traceable Certificate of Analysis Ohio Lumex Analytical Bias Test Reference Method Test Data (Computerized Sheets) Calibration Data Calibration Gas Certification Sheets Field Data Sheets	19 23 32 43 45 49 50 91 117

1.0 EXECUTIVE SUMMARY

The National Lime Association (NLA) sponsored a test program to determine the fate of mercury (Hg) in lime kiln systems. The test program was conducted at the Western Lime Corporation, WLC, Eden, WI facility in April 2011.

The facility was chosen, in part, because it had two completely different kiln systems that burned the same fuels and limestone which allowed comparing mercury behavior (i.e., speciation and retention). The test program consisted of two phases; 1) a four week solid sampling campaign and 2) stack sampling.

All solid and stack testing adsorbent trap samples were analyzed by thermal desorption followed by atomic adsorption using an Ohio Lumex Analyzer. The following are the major observations of the test program:

Solids Sampling Results and Conclusions

- For WLC, the major and most variable source of Hg input was coal which varied from 12 ppb to 50 ppb.
- The limestone had negligible Hg content at about 1 ppb.
- The lime had < 1 ppb Hg and can likely be eliminated from solid sampling campaigns.
- LKD adsorption of Hg is inversely proportional to atmospheric Hg emissions
 - More Hg on LKD = Less Hg to atmosphere.
- Solids sampling should be conducted and the samples analyzed upfront of any planned stack testing.
- Using total potential to emit minus that adsorbed on LKD is a good first cut to decide on stack testing,

Stack Testing Results and Conclusions

- The straight kiln system with heat exchanger upstream of baghouse retained >85% of Hg input,
 - The effluent temperature and its variation at the heat exchanger and particulate matter control device(s) greatly affected mercury adsorption onto the LKD.
 - As the heat exchanger cooled by ambient rain and wind, Hg emissions decreased. As the day warmed, so did the heat exchanger temperature with a subsequent rise in Hg emissions.
 - Emissions varied, with a maximum value of about 3 lb Hg/MM ton lime.
- The pre-heater kiln system retained <10% of Hg input to the system (12-15 lb Hg/MM tons lime),
 - The preheater tower and baghouse temperatures are very consistent once system equilibration is achieved and thus Hg is in a

state of adsorption/desorption resulting in little retention and thus steady emissions.

- The great differences in the Hg emissions from the two kiln systems was not expected,
 - It is unclear whether the difference is a result of the heat exchanger upfront of the baghouse for the straight kiln, or whether the baghouse, filter media and/or unburned carbon in the LKD also played a role.
- The results for speciated mercury on both kiln systems was found to be >80% elemental mercury (Hg⁻⁰) with the remainder oxidized mercury (Hg⁺²).
 - Control of Hg using dry sorbents and activated carbon, or by scrubbers is determined by the speciation state of the mercury compounds.

2.0 INTRODUCTION AND SUMMARY OF RESULTS

PLATT ENVIRONMENTAL SERVICES, INC. (PES) conducted six one-hour paired total mercury test runs and six one-hour paired speciated mercury test runs on the Kiln 1 Exhaust Stack and Kiln 2 Exhaust Stack for the National Lime Association at the Western Lime Eden Facility in Eden, Wisconsin on April 26 and 27, 2011. This report summarizes the results of the test program and test methods used.

The test location, test dates, and test parameters are summarized below, in Table 1.

Table 1

Test Overview

Test Location	Test Dates	Test Parameters				
Kiln 1 Exhaust Stack	April 26, 2011	Mercury (Hg) by Method 30B, Volumetric Flow,				
Kiln 2 Exhaust Stack	April 27, 2011	and Oxygen (O ₂)				

The identification of individuals associated with the test program is summarized below, in Table 2.

Table 2

Location	Address	Contact
Test Facility	Western Lime Corporation 206 N 6th Avenue / PO Box 57 West Bend, WI 53095	Ms. Mindy Ochs Environmental and Regulatory Director 262-334-3005 ext.101 (phone) mochs@westernlime.com
Test Coordinator	National Lime Association 200 N. Glebe Road Suite 800 Arlington, VA 22203	Ms. Arline Seeger Executive Director 703-243-5488 (phone) 703-243-5489 (fax) <u>aseeger@lime.org</u>
Testing Company Representative	Platt Environmental Services, Inc. 1520 Kensington Road Suite 204 Oak Brook, Illinois 60523	Mr. Eric Ehlers Senior Project Manager (630) 521-9400 (phone) (630) 521-9494 (fax)

Contact Information

The test crew consisted of D. Quedens, R. Granskog, and E. Ehlers of PES. Dr. Laura Kinner of Emissions Monitoring ,Inc. (EMI) observed the test program.

eehlers@plattenv.com

Selected results of the test program are summarized below, in Table 3. A complete summary of emission test results follows the narrative portion of this report.

Table 3

Test Results

Test Location	Parameter	Test Average (30B Standard Traps)
Kiln 1 Exhaust Stack	Hg, ppb	0.013
	Hg, ug/dscm	0.112
	Hg, lb/mm ton of lime	1.09

Test		Test Average (Speciated Traps)								
Location	Parameter	Oxidized	Elemental	Total						
Kiln 1 Exhaust Stack	Hg, ppb	0.002	0.012	0.014						
	Hg, ug/dscm	0.016	0.097	0.113						
SIGCK	Hg, lb/mm ton of lime	0.18	0.92	1.10						

Test Location	Parameter	Test Average (30B Standard Traps)
Kiln 2 Exhaust Stack	Hg, ppb	0.302
	Hg, ug/dscm	2.519
SIGCK	Hg, lb/mm ton of lime	14.11

Test		Test Average (Speciated Traps							
Location	Parameter	Oxidized	Elemental	Total					
Kiln 2 Exhaust Stack	Hg, ppb	0.051	0.270	0.322					
	Hg, ug/dscm	0.429	2.254	2.683					
	Hg, lb/mm ton of lime	2.19	12.80	14.99					

The test consisted of six one-hour paired Method 30B Hg sampling runs and six paired speciated sampling runs. Each sample was extracted at a single test point.

3.0 TEST METHODOLOGY

Emission testing was conducted following the methods specified in 40 CFR, Part 60, Appendix A and USEPA Method 30B. Schematics of the sampling trains used and copies of field data sheets for each test run are included in the Appendix.

The following methodologies were used during the test program:

Method 1 Sample Traverse Determination

Test measurement points were selected in accordance with Method 1, 40 CFR, Part 60, Appendix A. The characteristic of the measurement location is summarized below, in Table 4.

Sample Point Selection

Location	Upstream Diameters	Downstream Diameters	Test Parameter	Number of Sampling Points
Kiln 1 and 2			Hg, Moisture	1
Exhaust Stacks	> 0.5 Diameters	> 2.0 Diameters	Volumetric Flow	16

Method 2 Volumetric Flow Rate Determination

Gas velocity was measured following Method 2, for purposes of calculating stack gas volumetric flow rate and mercury mass emission rates. An S-type pitot tube, differential pressure gauge, thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data is presented in the Appendix.

Method 3A Oxygen (O₂) Determination

The flue gas carbon dioxide (CO_2) and oxygen (O_2) content was determined in accordance with Method 3A. Servomex analyzers were used to determine flue gas CO_2 and O_2 content of each exhaust kiln. All of the equipment used was calibrated in accordance with the specifications of the Method.

Mercury Determination by Method 30B (Sorbent Trap Method)

Paired Method 30B standard sorbent traps were performed along with simultaneous paired speciated sorbent traps collected on in-situ sorbent traps. The standard sorbent traps consisted of two sections of carbon, one to collect sample, the second to determine if breakthrough of mercury had occurred. The speciated sorbent traps consisted of three oxidized sections, the first to scrub any acid from the flue gas, the second section consisted of potassium chloride (KCI) to collect oxidized mercury, and a third section consisting of KCI to determine if breakthrough of oxidized mercury had occurred. Two standard carbon sections followed the the KCI sections to collect elemental mercury and verify that breakthrough of elemental mercury was within method QA/QC.

Mercury concentrations on Exhaust Kiln 1 were below the expected levels required to perform an appropriate set of three spiked samples. One spiked sample was performed during the sixth run to verify spike recovery was within method tolerance.

The sample trains used for this test program was designed by Apex, Inc. and meet all requirements for Method 30B sampling. Samples were analyzed onsite utilizing an Ohio Lumex, Inc. analyzer for total gaseous mercury.

Method 4 Moisture Determination

Stack gas moisture content was determined using a Method 4 sampling train. Utilizing this technique, stack gas is drawn through a series of four impingers. The first two impingers were each charged with 100 mls of deionized water. Impinger three was left empty and impinger four was charged with clean, dried silica gel. The entire impinger train was measured before and after each test run to determine the mass of moisture condensed.

During testing, the sample train was operated in the manner specified in USEPA Method 4. All of the data specified in Method 4 (gas volume, delta H, impinger outlet well temperature, etc.) was recorded on field data sheets.

All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data is presented in the Appendix.

4.0 TEST RESULTS SUMMARIES

				v	Vestern Lim	e - Eden, \	Visconsin					
					Ki	In 1 Stack			-			
Test No.	Date	Start Time	End Time	V _m (standard L)	ng detected	ppb	ug/dscm	ug/wscm	lb/hr	Stone Feed	Lime	Ib Hg/mr tons of lin
1A	4/26/2011	7:15	8:15	106.890	1.10	0.001	0.010	0.010	0.000001	22.62	11.31	0.11
1B	4/26/2011	7:15	8:15	106.793	1.60	0.002	0.015	0.014	0.000002	22.02	11.31	0.15
	·	Run 1 Average	9		1.35	0.002	0.013	0.010	0.000001	22.62	11.31	0.13
2A	4/26/2011	8:45	9:45	106.572	4.20	0.005	0.039	0.037	0.000004	22.45	11.23	0.39
2B	4/26/2011	8:45	9:45	106.288	4.20	0.005	0.040	0.037	0.000004	22.45	11.23	0.40
		Run 2 Average	9		4.20	0.005	0.039	0.040	0.000004	22.45	11.23	0.39
3A	4/26/2011	10:10	11:10	105.701	11.10	0.013	0.105	0.099	0.000011	22.70	11.35	1.00
3B	4/26/2011	10:10	11:10	105.574	11.10	0.013	0.105	0.099	0.000011	22.10	11.55	1.00
	1	Run 3 Average	9		11.10	0.013	0.105	0.100	0.000011	22.70	11.35	1.00
4A	4/26/2011	11:30	12:30	105.239	14.00	0.016	0.133	0.125	0.000014	22.67	11.34	1.27
4B	4/26/2011	11:30	12:30	105.478	15.00	0.017	0.142	0.134	0.000015	22.07	11.34	1.36
		Run 4 Average	9		14.50	0.016	0.138	0.130	0.000015	22.67	11.34	1.32
5A	4/26/2011	12:50	13:50	103.036	32.30	0.038	0.313	0.297	0.000035	22.70	11.35	3.08
5B	4/26/2011	12:50	13:50	103.507	32.50	0.038	0.314	0.297	0.000035	22.70	11.55	3.09
		Run 5 Average	9		32.40	0.038	0.314	0.300	0.000035	22.70	11.35	3.08
6A	4/26/2011	14:20	15:20	101.578	7.30	0.009	0.072	0.068	0.00008	22.80	11.40	0.70
6B	4/26/2011	14:20	15:20	101.426	5.30	0.006	0.052	0.049	0.000006	22.80	11.40	0.51
Run 6 Average					6.30	0.007	0.062	0.060	0.000007	22.80	11.40	0.61
	0	verall Avera	ge		11.64	0.013	0.112	0.107	0.000012	22.66	11.33	1.09

Standard Method 30B Mercury Test Results Summary Western Lime - Eden Wisconsin

			5	Speciated M	ethod 30B I	Mercury T	est Results	Summary					
				v	Vestern Lim Ki	e - Eden, \ In 1 Stack	Nisconsin						
Test No.	Date	Start Time	End Time	V _m (standard I)	ng detected	ppb	ug/dscm	ug/wscm	lb/hr	Stone Feed	Lime	Ib Hg/mm tons of lime	
1A-Oxidized	4/26/2011	7:15	8:15	56.121	1.50	0.003	0.027	0.030	0.000004			0.32	
1A-Elemental	4/26/2011	7:15	8:15	56.121	0.20	0.000	0.004	0.000	0.000000	22.62	11.31	0.00	
	1/20/2011	Run 1A Total	0.10	00.121	1.70	0.004	0.030	0.030	0.000004	22.62	11.31	0.32	
1B-Oxidized	4/26/2011	7:15	8:15	55.632	0.70	0.002	0.013	0.010	0.000001			0.11	
1B-Elemental	4/26/2011	7:15	8:15	55.632	0.00	0.000	0.000	0.000	0.000000	22.62 11.31	0.00		
		Run 1B Total			0.70	0.002	0.013	0.010	0.000001	22.62	11.31	0.11	
2A-Oxidized	4/26/2011	8:45	9:45	55.206	0.70	0.002	0.013	0.012	0.000001			0.13	
2A-Elemental	4/26/2011	8:45	9:45	55.206	1.70	0.004	0.031	0.029	0.000003	22.45	11.23	0.31	
		Run 2A Total			2.40	0.005	0.043	0.041	0.000005	22.45	11.23	0.44	
2B-Oxidized	4/26/2011	8:45	9:45	54.510	0.90	0.002	0.017	0.016	0.000002	00.45	44.00	0.17	
2B-Elemental	4/26/2011	8:45	9:45	54.510	1.90	0.004	0.035	0.033	0.000004	22.45	11.23	0.35	
		Run 2B Total			2.80	0.006	0.051	0.049	0.000006	22.45	11.23	0.51	
3A-Oxidized	4/26/2011	10:10	11:10	51.214	1.20	0.003	0.023	0.022	0.000003	00.70	44.05	0.22	
3A-Elemental	4/26/2011	10:10	11:10	51.214	2.00	0.005	0.039	0.037	0.000004	22.70	11.35	0.37	
		Run 3A Total			3.20	0.007	0.062	0.059	0.000007	22.70	11.35	0.60	
3B-Oxidized	4/26/2011	10:10	11:10	50.431	1.00	0.002	0.020	0.019	0.000002		22.70 11.35	0.19	
3B-Elemental	4/26/2011	10:10	11:10	50.431	2.30	0.005	0.046	0.043	0.000005		11.35	0.44	
		Run 3B Total			3.30	0.008	0.065	0.061	0.000007	22.70	11.35	0.62	
4A-Oxidized	4/26/2011	11:30	12:30	47.502	0.60	0.002	0.013	0.012	0.000001			44.04	0.12
4A-Elemental	4/26/2011	11:30	12:30	47.502	4.70	0.012	0.099	0.093	0.000011	22.67	11.34	0.95	
		Run 4A Total			5.30	0.013	0.112	0.105	0.000012	22.67	11.34	1.07	
4B-Oxidized	4/26/2011	11:30	12:30	46.215	0.90	0.002	0.019	0.018	0.000002	00.07	44.04	0.19	
4B-Elemental	4/26/2011	11:30	12:30	46.215	4.90	0.013	0.106	0.100	0.000011	22.67	11.34	1.01	
		Run 4B Total			5.80	0.015	0.125	0.118	0.000014	22.67	11.34	1.20	
5A-Oxidized	4/26/2011	12:50	13:50	38.971	0.80	0.002	0.021	0.019	0.000002	00.70	44.05	0.20	
5A-Elemental	4/26/2011	12:50	13:50	38.971	13.00	0.040	0.334	0.316	0.000037	22.70	11.35	3.28	
		Run 5A Total			13.80	0.042	0.354	0.335	0.000039	22.70	11.35	3.48	
5B-Oxidized	4/26/2011	12:50	13:50	38.629	0.80	0.002	0.021	0.020	0.000002	22.70	44.05	0.20	
5B-Elemental	4/26/2011	12:50	13:50	38.629	12.30	0.038	0.318	0.302	0.000036	22.70	11.35	3.13	
		Run 5B Total			13.10	0.041	0.339	0.321	0.000038	22.70	11.35	3.33	
6A-Oxidized	4/26/2011	14:20	15:20	47.119	0.40	0.001	0.008	0.008	0.000001	00.00	44.40	0.08	
6A-Elemental	4/26/2011	14:20	15:20	47.119	3.10	0.008	0.066	0.062	0.000007	22.80	11.40	0.64	
		Run 6A Total			3.50	0.009	0.074	0.070	0.000008	22.80	11.40	0.73	
6B-Oxidized	4/26/2011	14:20	15:20	47.193	0.20	0.001	0.004	0.004	0.000000	22.80	11.40	0.04	
6B-Elemental	4/26/2011	14:20	15:20	47.193	4.00	0.010	0.085	0.080	0.000009	22.00	11.40	0.83	
		Run 6B Total			4.20	0.011	0.089	0.084	0.000010	22.80	11.40	0.87	
								1	r	,		r	
		ed Overall A			0.81	0.002	0.016	0.016	0.000002	22.66	11 22	0.18	
		tal Overall A			4.18	0.012	0.097	0.091	0.000011	22.66	11.33	0.92	
	Total	Overall Ave	erage		4.98	0.014	0.113	0.107	0.000013			1.10	

				r	1.11	1 2 Stack							
Test No.	Date	Start Time	End Time	V _m (standard L)	ng detected	ppb	ug/dscm	ug/wscm	lb/hr	Stone Feed	Lime	Ib Hg/mm tons of lime	
1A	4/27/2011	7:20	8:20	57.155	142.40	0.299	2.491	2.370	0.000290	40.60	20.30	14.30	
1B	4/27/2011	7:20	8:20	57.094	132.40	0.278	2.319	2.208	0.000270	40.00	20.30	13.32	
	F	Run 1 Average)		137.40	0.288	2.405	2.290	0.000280	40.60	20.30	13.81	
2A	4/27/2011	8:45	9:45	45.912	111.40	0.291	2.426	2.310	0.000283	40.60	20.30	13.94	
2B	4/27/2011	8:45	9:45	45.779	107.90	0.283	2.357	2.244	0.000275	40.00	20.30	13.54	
	F	Run 2 Average)		109.65	0.287	2.392	2.280	0.000279	40.60	20.30	13.74	
3A	4/27/2011	10:10	11:10	45.427	129.00	0.340	2.840	2.689	0.000319	40.60	40.60	20.30	15.71
3B	4/27/2011	10:10	11:10	45.259	128.70	0.341	2.844	2.693	0.000319	40.00	20.00	15.73	
	F	Run 3 Average	•		128.85	0.341	2.842	2.690	0.000319	40.60	20.30	15.72	
4A	4/27/2011	11:45	12:45	45.212	102.30	0.271	2.263	2.143	0.000254	40.60	20.30	12.52	
4B	4/27/2011	11:45	12:45	45.194	109.10	0.289	2.414	2.286	0.000271	40.00	20.30	13.35	
	F	Run 4 Average)		105.70	0.280	2.338	2.210	0.000263	40.60	20.30	12.94	
5A	4/27/2011	13:05	14:05	45.224	115.10	0.305	2.545	2.405	0.000287	40.60	20.30	14.12	
5B	4/27/2011	13:05	14:05	45.063	118.90	0.316	2.639	2.493	0.000297	40.00	20.30	14.63	
	F	Run 5 Average	•		117.00	0.311	2.592	2.450	0.000292	40.60	20.30	14.37	
6A	4/27/2011	14:35	15:35	45.109	110.10	0.293	2.441	2.307	0.000275	40.60	20.30	13.54	
6B	4/27/2011	14:35	15:35	44.891	118.80	0.317	2.646	2.501	0.000298	40.00	20.00	14.68	
Run 6 Average					114.45	0.305	2.544	2.400	0.000286	40.60	20.30	14.11	
							-	-				-	
Overall Average				118.84	0.302	2.519	2.387	0.000287	40.60	20.30	14.11		

Standard Method 30B Mercury Test Results Summary Western Lime - Eden, Wisconsin

Kiln 2 Stack

Kiln 2 Stack												
Test No.	Date	Start Time	End Time	V _m (standard L)	ng detected	ppb	ug/dscm	ug/wscm	lb/hr	Stone Feed	Lime	Ib Hg/mm tons of lime
1A-Oxidized	4/27/2011	7:20	8:20	52.925	42.40	0.096	0.801	0.760	0.000093	40.60	20.30	4.59
1A-Elemental	4/27/2011	7:20	8:20	52.925	104.80	0.237	1.980	1.890	0.000231	40.00	20.30	11.40
		Run 1A Total			147.20	0.333	2.781	2.650	0.000325	40.60	20.30	15.99
1B-Oxidized	4/27/2011	7:20	8:20	52.518	45.20	0.103	0.861	0.820	0.000100	40.60	20.30	4.95
1B-Elemental	4/27/2011	7:20	8:20	52.518	101.00	0.231	1.923	1.830	0.000224	40.00	20.00	11.04
		Run 1B Total			146.20	0.334	2.784	2.650	0.000325	40.60	20.30	15.99
2A-Oxidized	4/27/2011	8:45	9:45	45.954	8.60	0.022	0.187	0.178	0.000022	40.60	.60 20.30	1.07
2A-Elemental	4/27/2011	8:45	9:45	45.954	101.70	0.265	2.213	2.107	0.000258	10.00		12.71
		Run 2A Total			110.30	0.288	2.400	2.285	0.000280	40.60	20.30	13.79
2B-Oxidized	4/27/2011	8:45	9:45	45.704	12.80	0.034	0.280	0.267	0.000033	40.60	20.30	1.61
2B-Elemental	4/27/2011	8:45	9:45	45.704	100.20	0.263	2.192	2.087	0.000256	10.00	20.00	12.59
		Run 2B Total			113.00	0.296	2.472	2.354	0.000288	40.60	20.30	14.20
3A-Oxidized	4/27/2011	10:10	11:10	52.062	18.90	0.044	0.363	0.344	0.000041	40.60	20.30	2.01
3A-Elemental	4/27/2011	10:10	11:10	52.062	128.50	0.296	2.468	2.337	0.000277	10.00		13.65
		Run 3A Total		-	147.40	0.339	2.831	2.681	0.000318	40.60	15.66	
3B-Oxidized	4/27/2011	10:10	11:10	51.729	26.80	0.062	0.518	0.491	0.000058	40.60	20.30	2.87
3B-Elemental	4/27/2011	10:10	11:10	51.729	126.20	0.292	2.440	2.310	0.000274	10.00		13.50
Run 3B Total				153.00	0.355	2.958	2.801	0.000332	40.60	20.30	16.36	
4A-Oxidized	4/27/2011	11:45	12:45	48.953	16.00	0.039	0.327	0.310	0.000037	40.60	20.30	1.81
4A-Elemental	4/27/2011	11:45	12:45	48.953	103.70	0.254	2.118	2.006	0.000238	10.00		11.72
Run 4A Total			119.70	0.293	2.445	2.316	0.000275	40.60	20.30	13.53		
4B-Oxidized	4/27/2011	11:45	12:45	48.601	17.60	0.043	0.362	0.343	0.000041	40.60	20.30	2.00
4B-Elemental	4/27/2011	11:45	12:45	48.601	101.40	0.250	2.086	1.976	0.000234	10.00	20.00	11.54
		Run 4B Total			119.00	0.294	2.449	2.319	0.000275	40.60	20.30	13.55
5A-Oxidized	4/27/2011	13:05	14:05	47.869	12.30	0.031	0.257	0.243	0.000029	40.60	20.30	1.43
5A-Elemental	4/27/2011	13:05	14:05	47.869	122.40	0.307	2.557	2.416	0.000288	10.00	20.00	14.18
		Run 5A Total		r	134.70	0.337	2.814	2.659	0.000317	40.60	20.30	15.61
5B-Oxidized	4/27/2011	13:05	14:05	47.618	14.60	0.037	0.307	0.290	0.000035	40.60	20.30	1.70
5B-Elemental	4/27/2011	13:05	14:05	47.618	114.30	0.288	2.400	2.268	0.000270			13.31
		Run 5B Total			128.90	0.324	2.707	2.558	0.000305	40.60	20.30	15.01
6A-Oxidized	4/27/2011	14:35	15:35	47.915	19.50	0.049	0.407	0.385	0.000046	40.60	20.30	2.26
6A-Elemental	4/27/2011	14:35	15:35	47.915	113.20	0.283	2.363	2.233	0.000266	40.00	20.30	13.10
Run 6A Total			132.70	0.332	2.769	2.617	0.000312	40.60	20.30	15.36		
6B-Oxidized	4/27/2011	14:35	15:35	47.517	22.60	0.057	0.476	0.449	0.000054	40.60	20.30	2.64
6B-Elemental	4/27/2011	14:35	15:35	47.517	109.50	0.276	2.304	2.178	0.000259		0	12.78
Run 6B Total				132.10	0.333	2.780	2.627	0.000313	40.60	20.30	15.42	
	Oxidize	ed Overall A	verage		21.44	0.051	0.429	0.407	0.000049			2.19
	Elemen	tal Overall A	verage		110.58	0.270	2.254	2.137	0.000256		20.30	12.80
Total Overall Average					132.02	0.322	2.683	2.543	0.000305			14.99

Speciated Method 30B Mercury Test Results Summary Western Lime - Eden, Wisconsin

Samples were dried before analyses									
Stone									
Daily Samples	Mass (g)	ng Hg	ppb	% H ₂ O	ppb dry				
3/21/11	0.6392	0.5	0.78	0	0.78				
3/22/11	0.6249	0.4	0.64	0	0.64				
3/23/11	0.7535	0.7	0.93	0	0.93				
3/24/11	0.6321	0.5	0.79	0	0.79				
3/25/11	0.6300	0.5	0.79	0	0.79				
Composite Samples									
Comp Week 1	0.6202	0.5	0.81	0	0.81				
Comp Week 2	1.0135	1.5	1.48	0	1.48				
Comp Week 3	0.8937	1.0	1.12	0	1.12				
Comp Week 4	1.0585	1.3	1.23	0	1.23				
STACK TEST DAYS	Mass (g)	ng Hg	ppb	% H ₂ O	ppb dry				
4/26/11	0.9978	0.7	0.70	0	0.70				
4/27/11	1.0088	0.8	0.79	0	0.79				

National Lime Association (Western Lime) - Hg Solid Analyses

Samples were dried before analyses											
Lime Kiln Dust											
Kiln 1 Kiln 2											
Daily Samples	Mass (g)	ng Hg	ppb	% H ₂ O	ppb dry	Daily Samples	Mass (g)	ng Hg	ppb	% H ₂ O	ppb dry
3/21/11	1.0196	120	117.69	0	117.69	3/21/11	0.6592	16	24.27	0	24.27
3/22/11	1.0439	121	115.91	0	115.91	3/22/11	0.6621	12	18.12	0	18.12
3/23/11	1.0510	149	141.77	0	141.77	3/23/11	0.6634	10	15.07	0	15.07
3/24/11	1.1601	164	141.37	0	141.37	3/24/11	0.6409	11	17.16	0	17.16
3/25/11	1.0498	153	145.74	0	145.74	3/25/11	0.6635	18	27.13	0	27.13
Composite Samples		Composite Samples									
Comp Week 1	0.9453	122	129.06	0	129.06	Comp Week 1	0.6703	12	17.90	0	17.90
Comp Week 2	0.5136	78	151.87	0	151.87	Comp Week 2	0.5694	15	26.34	0	26.34
Comp Week 3	0.6715	77	114.67	0	114.67	Comp Week 3	0.6346	16	25.21	0	25.21
Comp Week 4	0.6248	97	155.25	0	155.25	Comp Week 4	0.6219	13	20.90	0	20.90
STACK TEST DAYS	Mass (g)	ng Hg	ppb	% H ₂ O	ppb dry	STACK TEST DAYS	Mass (g)	ng Hg	ppb	% H ₂ O	ppb dry
4//26/11 - 1A	0.5009	29	57.90	0	57.90	4/27/11	0.4980	9.7	19.48	0	19.48
4/26/11 - 1B	0.4927	29	58.86	0	58.86						
Run Average 0.4968 29 58.38 0 58.38											

Samples were dried before analyses

Samples were dried before analyses

Fuel									
Composite Samples	Mass (g)	ng Hg	ppb	% H ₂ O	ppb dry				
Comp Week 1A (in-house rerun)	0.2362	3	12.70	0	12.70				
Comp Week 1B (in-house rerun)	0.2040	3.6	17.65	0	17.65				
Comp Week 1 (field run)	0.2006	10	49.85	0	49.85				
Comp Week 2 (In-house rerun)	0.2058	9.1	44.22	0	44.22				
Comp Week 2	0.2692	13	48.29	0	48.29				
Comp Week 3A (in-house rerun)	0.2036	9.5	46.66	0	46.66				
Comp Week 3B (in-house rerun)	0.2069	4.8	23.20	0	23.20				
Comp Week 3	0.2079	10	48.10	0	48.10				
Comp Week 4A (in-house rerun)	0.2384	5.4	22.65	0	22.65				
Comp Week 4B (in-house rerun)	0.2079	6	28.86	0	28.86				
Comp Week 4	0.2456	10	40.72	0	40.72				
STACK TEST DAYS	Mass (g)	ng Hg	ppb	% H ₂ O	ppb dry				
4/26/11	0.2363	6.5	27.51	0	27.51				
4/27/11	0.2080	8.2	39.42	0	39.42				
Run Average	0.22215	7.35	33.47	0	33.47				

12

		•	•	•					
Samples were dried before analyses									
Lime K1									
Daily Samples	Mass (g)	ng Hg	ppb	% H ₂ O	ppb dry				
3/21/11	0.6222	0.4	0.64	0	0.64				
3/22/11	0.6074	0.6	0.99	0	0.99				
3/23/11	0.6684	0.3	0.45	0	0.45				
3/24/11	0.7316	0.5	0.68	0	0.68				
3/25/11	0.6182	0.1	0.16	0	0.16				
Composite Samples									
Comp Week 1	0.6610	0.3	0.45	0	0.45				
Comp Week 2	0.5897	0.5	0.85	0	0.85				
Comp Week 3	0.7266	0.3	0.41	0	0.41				
Comp Week 4	0.6118	0.5	0.82	0	0.82				
-									
STACK TEST DAYS	Mass (g)	ng Hg	ppb	% H ₂ O	ppb dry				
4/26/2011	0.5046	0.5	0.99	0	0.99				

Samples were dried before analyses									
Lime K2									
Daily Samples	Mass (g)	ng Hg	ppb	% H ₂ O	ppb dry				
3/21/11	0.5031	0.1	0.20	0	0.20				
3/21/11	0.4940	0.0	0.00	0	0.00				
3/22/11	0.5060	0.1	0.20	0	0.20				
3/22/11	0.5078	0.0	0.00	0	0.00				
3/23/11	0.4971	0.0	0.00	0	0.00				
3/23/11	0.4923	0.0	0.00	0	0.00				
3/24/11	0.5035	0.0	0.00	0	0.00				
3/24/11	0.4957	0.0	0.00	0	0.00				
3/25/11	0.5037	0.0	0.00	0	0.00				
3/25/11	0.4946	0.1	0.20	0	0.20				
Composite Samples									
Comp Week 1	0.5025	0.0	0.00	0	0.00				
Comp Week 1	0.4932	0.0	0.00	0	0.00				
Comp Week 2	0.6400	0.5	0.78	0	0.78				
Comp Week 3	0.6088	0.5	0.82	0	0.82				
Comp Week 4	0.6763	0.5	0.74	0	0.74				
STACK TEST DAYS	Mass (g)	ng Hg	ppb	% H ₂ O	ppb dry				
4/27/11	0.5096	0.3	0.59	0	0.59				

5.0 OPERATING DATA

Operating data was recorded and retained by Western Lime personnel during each test run.

6.0 CONCLUSION AND CERTIFICATION

PLATT ENVIRONMENTAL SERVICES is pleased to have been of service to National Lime Association and to Western Lime. If you have any questions regarding this test report, please do not hesitate to contact us at 630-521-9400.

CERTIFICATION

As program manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

PLATT ENVIRONMENTAL SERVICES

ES L Ett

Eric L. Ehlers

Program Manager

JuyM. Crihne

Quality Assurance

Jeffrey M. Crivlare

APPENDIX