# DRY FLUE GAS DESULFURIZATION TECHNOLOGY EVALUATION PROJECT NUMBER 11311-000

PREPARED FOR NATIONAL LIME ASSOCIATION

SEPTEMBER 2002

**PREPARED BY** 

Sargent & Lundy

55 East Monroe Street Chicago, IL 60603-5780 USA

#### LEGAL NOTICE

This report was prepared by Sargent & Lundy LLC (Sargent & Lundy) expressly for National Lime Association. Neither Sargent & Lundy nor any person acting on its behalf (a) makes any warranty, express or implied, with respect to the use of any information or methods disclosed in this report or (b) assumes any liability with respect to the use of any information or methods disclosed in this report.



# NATIONAL LIME ASSOCIATION

#### **CONTENTS**

| SECTION |
|---------|
|---------|

PAGE

| 1.  | FLU   | E GAS DESULFURIZATION (FGD) DESCRIPTION 1                |   |
|-----|-------|----------------------------------------------------------|---|
| 1.1 | Pro   | cess Chemistry1                                          | - |
| 1.2 | Rea   | gents and Waste Products1                                | - |
| 1.3 | Cor   | nmercial Status2                                         |   |
| 2.  | DRY   | FGD PROCESS ADVANTAGES AND DISADVANTAGES COMPARED TO WET | • |
| FG  | D TE( | CHNOLOGY                                                 | i |
| 2.1 | Pro   | cess Advantages                                          | 6 |
| 2.2 | Pro   | cess Disadvantages4                                      | ł |
| 3.  | DESI  | GN BASIS                                                 | ; |
| 3.1 | Spe   | cific Design Criteria – Dry FGD5                         | ; |
| 3.2 | Sys   | tem Design (Subsystems)6                                 | Í |
| 3   | .2.1  | Reagent Handling and Preparation7                        | , |
| 3   | .2.2  | SO <sub>2</sub> Removal                                  | , |
| 3   | .2.3  | Baghouse                                                 | ; |
| 3   | .2.4  | Flue Gas System/Stack                                    | ; |
| 3   | .2.5  | Waste Handling                                           | ; |
| 3   | .2.6  | General Support                                          | ; |
| 3   | .2.7  | Miscellaneous                                            | ; |



# NATIONAL LIME ASSOCIATION

#### **CONTENTS**

| SEC | CTION PAGE                                   |
|-----|----------------------------------------------|
| 4.  | IDENTIFICATION OF APPLICATION CONSTRAINTS 11 |
| 4.1 | Unit/Absorber Size11                         |
| 4.2 | Coal Sulfur Content11                        |
| 4.3 | Performance Expectations11                   |
| 4.4 | SO <sub>2</sub> Reduction12                  |
| 4.5 | Reagent Utilization12                        |
| 4.6 | Waste/By-Product Quality13                   |
| 4.7 | Energy Consumption13                         |
| 4.8 | Retrofit Versus New Units                    |
| 5.  | COSTS ANALYSIS14                             |
| 5.1 | Capital Costs14                              |
| 5.2 | Operations and Maintenance Costs15           |
| 5   | 2.1 Fixed O&M Costs                          |
| 5   | 2.2 Variable O&M Costs                       |
| 5.3 | Levelized Costs                              |



PROJECT NUMBER 11311-000 SEPTEMBER 26, 2002

# NATIONAL LIME ASSOCIATION

## EXHIBITS

| NUMBER | TITLE                                                    |
|--------|----------------------------------------------------------|
| 5-1    | Capital Cost Estimates for New Units                     |
| 5-2    | Capital Cost Estimates for Retrofit Units                |
| 5-3    | Fixed and Variable O&M Cost Estimates for New Units      |
| 5-4    | Fixed and Variable O&M Cost Estimates for Retrofit Units |



# NATIONAL LIME ASSOCIATION

## **REPORT PREPARED, REVIEWED, AND APPROVED BY SARGENT & LUNDY LLC:**

| Prepared by: |                                        | September 26, 2002         |
|--------------|----------------------------------------|----------------------------|
|              | Raj Gaikwad                            | Date                       |
|              | Technical Advisor                      |                            |
| Reviewed by: | Willard L. Boward<br>Technical Advisor | September 26, 2002<br>Date |
| Approved by: | William DePriest<br>Project Director   | September 26, 2002<br>Date |

## NATIONAL LIME ASSOCIATION

# 1. FLUE GAS DESULFURIZATION (FGD) DESCRIPTION

Lime-spray drying (LSD) is a dry scrubbing process that is generally used for low-sulfur coal. LSD FGD systems are typically located after the air preheaters, and the waste products are collected either in a baghouse or electrostatic precipitator. However, to achieve sulfer dioxide (SO<sub>2</sub>) reduction above 80% with good reagent use, the dry scrubber is generally followed by a baghouse.

Flue gas is treated in an absorber by mixing the gas stream concurrently with atomized lime slurry droplets. The lime slurry is atomized through rotary cup spray atomizers or through dual fluid nozzles. Some of the water in the spray droplets evaporates, cooling the gas at the inlet from 300°C or higher to 160°F to 180°F, depending on the relationship between approach to saturation and removal efficiency. The droplets absorb  $SO_2$  from the gas and react the  $SO_2$  with the lime in the slurry. The desulfurized flue gas, along with reaction products, unreacted lime, and the fly ash passes out of the dry scrubber to the baghouse.

#### **1.1 PROCESS CHEMISTRY**

The SO<sub>2</sub> absorbed in the atomized slurry reacts with lime in the slurry to form calcium sulfite (CaSO<sub>3</sub>) in the following reaction:

 $SO_2 + CaO + 1/2 H_2O \Rightarrow CaSO_3 \bullet 1/2 H_2O$ 

A part of the CaSO<sub>3</sub> reacts with oxygen in the flue gas to form calcium sulfate (CaSO<sub>4</sub>):

 $CaSO_3 + {}^{1}\!/_{2}O_2 + 2H_2O \Longrightarrow CaSO_4 \bullet 2H_2O$ 

## **1.2 REAGENTS AND WASTE PRODUCTS**

Preparation of the lime slurry reagent involves slaking lime in a conventional lime slaker with a high efficiency grit removal and lime recovery system. The slaked lime is held in an agitated tank for use. The slurry reagent is fed to the absorber to replenish lime consumed in the reaction, and the feed rate is typically controlled based on the removal efficiency required.

## NATIONAL LIME ASSOCIATION

The waste product contains CaSO<sub>3</sub>, CaSO<sub>4</sub>, calcium hydroxide, and ash.

#### **1.3** COMMERCIAL STATUS

Sargent & Lundy

LSD FGD systems are in operation at many facilities, ranging in size from less than 10 MW to 500 MW (multiple modules are required for plants greater than 300 MW in capacity). For eastern bituminous coals, some FGD vendors have proposed modules for units sized up to 350 MW. Applications include commercial units with coal sulfur as high as 2.0%. LSD systems with rotary or dual fluid atomizers are available from a number of vendors including:

- Alstom Environmental Systems
- Babcock & Wilcox
- Hamon Research Cottrell
- Wheelabrator Air Pollution Control



## NATIONAL LIME ASSOCIATION

# 2. DRY FGD PROCESS ADVANTAGES AND DISADVANTAGES COMPARED TO WET FGD TECHNOLOGY

## 2.1 PROCESS ADVANTAGES

The dry FGD process has the following advantages when compared to wet limestone FGD technology:

- 1. The absorber vessel can be constructed of unlined carbon steel, as opposed to lined carbon steel or solid alloy construction for wet FGD. Typically, for units less than 300 MW, the capital cost is lower than for wet FGD. Typically, for units larger than 300 MW, multiple module requirements causes the dry FGD process to be more expensive than the wet FGD process.
- 2. Pumping requirements and overall power consumption are lower than for wet FGD systems.
- 3. Waste CaSO<sub>3</sub>, CaSO<sub>4</sub>, and calcium hydroxide are produced in a dry form and can be handled with conventional pneumatic fly ash handling equipment.
- 4. The waste is stable for landfilling purposes and can be disposed of concurrently with fly ash.
- 5. The dry FGD system uses less equipment than does the wet FGD system, resulting in fixed, lower operations and maintenance (O&M) labor requirements.
- 6. The pressure drop across the absorber is typically lower than for wet FGD.
- 7. High chloride levels improve (up to a point), rather than hinder, SO<sub>2</sub> removal performance.
- 8. Sulfur trioxide (SO<sub>3</sub>) in the vapor above approximately 300°F, which condenses to liquid sulfuric acid at a lower temperature (below acid dew point), is removed efficiently with a spray dryer-baghouse. Wet limestone scrubbers capture less than 25% to 40% of SO<sub>3</sub> and would require the addition of a wet electrostatic precipitator to remove the balance or hydrated lime injection. The emission of sulfuric acid mist, if above a threshold value, may result in a plume visible after the vapor plume dissipates.
- 9. Flue gas following a spray dryer is unsaturated with water (30°F to 50°F above dew point), which reduces or eliminates a visible moisture plume. Wet limestone scrubbers produce flue gas that is saturated with water, which requires a gas-gas heat exchanger to reheat the flue gas to operate as dry stack. Due to the high costs associated with heating the flue gas, all recent wet FGD systems in the United States have used wet stack operations.



## NATIONAL LIME ASSOCIATION

- 10. Dry FGD systems have the capability of capturing a high percentage of gaseous mercury in the flue gas if the mercury is in the oxidized form. Further, due to the nature of the filter cake present in the fabric filter associated with LSD, the LSD equipment with a fabric filter will tend to capture a higher percentage of oxidized mercury than would LSD equipment with an electrostatic precipitator. The major constituent that will influence the oxidation level of mercury in the flue gas has been identified as chlorine. Considering the typical level of chlorine in coals in the United States, we can expect that LSD systems applied to high chlorine bituminous coals will tend to capture a high percentage of the mercury present in the flue gas. Conversely, LSD systems applied to low-chlorine sub-bituminous coals and lignite will not capture a significant amount of the mercury in the flue gas.
- 11. There is no liquid waste from a dry FGD system, while wet limestone systems produce a liquid waste stream. In some cases, a wastewater treatment plant must be installed to treat the liquid waste prior to disposal. The wastewater treatment plant produces a small volume of waste, rich in toxic metals (including mercury) that must be disposed of in a landfill. A dry FGD system provides an outlet for process wastewater from other parts of the plant when processing residue for disposal.

#### 2.2 **PROCESS DISADVANTAGES**

The dry FGD process has the following disadvantages when compared to limestone wet FGD technology:

- 1. The largest absorber module used in the industry is 250 MW to300 MW. Some suppliers of dry FGD systems have proposed absorbers as large as 350 MW for eastern bituminous coal-fired units. For units sized at 500 MW, two modules will be required. This will also result in large inlet and outlet ductwork and damper combinations.
- 2. The process uses a more expensive reagent (lime) than limestone-based FGD systems and the reagent has to be stored in a steel or concrete silo.
- 3. Reagent utilization is lower than for wet limestone systems to achieve comparable  $SO_2$  removals. The lime stoichiometric ratio is higher than the limestone stoichiometric ratio (on the same basis) to achieve comparable  $SO_2$  removals.
- 4. Dry FGD produces a large volume of waste, which does not have many uses due to its properties, i.e., permeability, soluble products, etc. Researchers may yet develop some applications where the dry FGD waste can be used. Wet FGD can produce commercial-grade gypsum.
- 5. Combined removal of fly ash and waste solids in the particulate collection system precludes commercial sale of fly ash if the unit is designed to remove FGD waste and fly ash together. In some cases, FGD could be backfit after the existing electrostatic precipitator, which would allow the sale of fly ash.



# NATIONAL LIME ASSOCIATION

# 3. DESIGN BASIS

#### 3.1 SPECIFIC DESIGN CRITERIA – DRY FGD

Table 3.1-1 lists the specific design criteria.

| TABLE 3.1-1   Specific Design Criteria    |                          |                                    |  |  |  |  |
|-------------------------------------------|--------------------------|------------------------------------|--|--|--|--|
| Unit capacity 500 MW 500 MW               |                          |                                    |  |  |  |  |
| Heat input to boiler, MBtu/hr             | 5,000                    | 5,186                              |  |  |  |  |
| Fuel                                      | Low-sulfur - Appalachian | Low-sulfur - Powder River<br>Basin |  |  |  |  |
| Fuel analysis, % wt.:                     |                          |                                    |  |  |  |  |
| Moisture                                  | 6.0                      | 30.4                               |  |  |  |  |
| Ash                                       | 9.1                      | 6.4                                |  |  |  |  |
| Carbon                                    | 72.6                     | 47.8                               |  |  |  |  |
| Hydrogen                                  | 4.8                      | 3.4                                |  |  |  |  |
| Nitrogen                                  | 1.4                      | 0.7                                |  |  |  |  |
| Sulfur                                    | 1.3                      | 0.6                                |  |  |  |  |
| Oxygen                                    | 4.7                      | 10.8                               |  |  |  |  |
| Chlorine                                  | 0.1                      | 0.03                               |  |  |  |  |
| High heating value, Btu/lb                | 13,100                   | 8,335                              |  |  |  |  |
| SO <sub>2</sub> generation, lb/Mbtu       | 2.0                      | 1.44                               |  |  |  |  |
| Coal feed rate, tons/hr                   | 191                      | 311                                |  |  |  |  |
| Flue gas flow at FGD inlet, macfm         | 1.79                     | 1.97                               |  |  |  |  |
| Flue gas temperature at FGD inlet, °F     | 280                      | 280                                |  |  |  |  |
| Flue gas flow at FGD outlet, macfm        | 1.60                     | 1.75                               |  |  |  |  |
| Flue gas temperature at FGD outlet,<br>°F | 160                      | 165                                |  |  |  |  |

# DRY FLUE GAS DESULFURIZATION TECHNOLOGY EVALUATION

## NATIONAL LIME ASSOCIATION

| Table 3.1-1     Specific Design Criteria |           |           |  |  |
|------------------------------------------|-----------|-----------|--|--|
| SO <sub>2</sub> reduction efficiency, %  | 94        | 93        |  |  |
| SO <sub>2</sub> outlet, lb/MBtu          | 0.120     | 0.10      |  |  |
| Mercury concentration in coal, ppmd      | 0.06-0.10 | 0.08-0.12 |  |  |

Table 3.1-2 summarizes the parameters used for the FGD comparison.

| TABLE 3.1-2     PARAMETERS USED FOR FGD COMPARISON       |                                                  |                                                  |  |  |
|----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--|--|
| Unit Capacity                                            | 500 MW                                           | 500 MW                                           |  |  |
| Heat input to boiler, MBtu/hr                            | 5,000                                            | 5,186                                            |  |  |
| Fuel                                                     | Low-sulfur - Appalachian                         | Low-sulfur - Powder River<br>Basin               |  |  |
| SO <sub>2</sub> removal, %                               | 94                                               | 93                                               |  |  |
| SO <sub>2</sub> emission, lb/MBtu                        | 0.12                                             | 0.10                                             |  |  |
| Byproduct                                                | Dry waste                                        | Dry waste                                        |  |  |
| Power consumption, %                                     | 0.65 new (without baghouse),<br>1.1 for retrofit | 0.70 new (without baghouse),<br>1.2 for retrofit |  |  |
| Reagent                                                  | High calcium lime                                | High calcium lime                                |  |  |
| Reagent cost, \$/ton                                     | 60                                               | 60                                               |  |  |
| Reagent purity, %                                        | 93                                               | 93                                               |  |  |
| Reagent stoichiometry, moles of CaO/mole of inlet sulfur | 1.4                                              | 1.1                                              |  |  |
| Load factor                                              | 80                                               | 80                                               |  |  |
| FGD system life, years                                   | 30 (new)/20 (retrofit)                           | 30 (new)/20 (retrofit)                           |  |  |
| Capital cost leveling factor, %/year                     | 14.5 (new)/15.43 (retrofit)                      | 14.5 (new)/15.43 (retrofit)                      |  |  |
| Discount rate, %                                         | 8.75                                             | 8.75                                             |  |  |
| Inflation rate, %                                        | 2.5                                              | 2.5                                              |  |  |
| Operating cost levelization factor                       | 1.30/1.22                                        | 1.30/1.22                                        |  |  |

## **3.2** System Design (Subsystems)

The FGD system overall design consists of the following subsystems:

## NATIONAL LIME ASSOCIATION

#### 3.2.1 Reagent Handling and Preparation

Lime is received by truck (or barge) and conveyed to storage. Lime is stored in a 14-day capacity bulk storage lime silo. The lime is pneumatically conveyed to a 16-hour capacity day bin. The lime day bin and a gravimetric feeder supplies the lime to a 150% slaking system. This will allow two shift operations for the unit operating continuously at 100% load. A conventional lime slaker with high-efficiency grit removal and lime recovery system is used. Two 100% capacity slurry transfer pumps are used to provide high reliability to transfer the slurry to the slurry tank. The process makeup water is added to the slaker to produce 20% solids slurry. The slurry is diluted on line, if required, prior to injection into an absorber. The slurry is fed to the absorber by a dedicated reagent feed pump (100% spare capacity provided).

#### 3.2.2 SO<sub>2</sub> Removal

Sargent & Lundy

Two absorbers, each treating 50% of the flue gas, are provided to achieve 93% to 94% SO<sub>2</sub> removal efficiency in the absorber and baghouse. The absorber is a vertical, open chamber with concurrent contact between the flue gas and lime slurry. The slurry is injected into the tower at the top using a rotary atomizer to remove SO<sub>2</sub>. A spare rotary atomizer is provided. The hopper in the bottom of the carbon steel absorber also removes large particles that may drop in the absorber. The absorber will be operated at 30°F adiabatic approach to saturation temperature. In the past, a lower approach had been proposed. However, over the years, operational problems associated with the lower adiabatic approach to saturation temperature, due to wetting of the walls and large deposits in the absorber, were alleviated by designs with 30°F adiabatic approach to saturation temperature.



#### NATIONAL LIME ASSOCIATION

#### 3.2.3 Baghouse

Sargent & Lundy

A pulse-jet baghouse with air to cloth ratio of 3.5 ft/min is provided. The baghouse is provided with a spare compartment for off line cleaning to maintain the opacity at 10% or less. The waste will be pneumatically conveyed to a waste storage silo with a 3-day storage capacity, which is in accordance with typical utility design.

#### 3.2.4 Flue Gas System/Stack

The flue gas from the air preheater will be sent to the absorbers. The gases from the absorber will be sent to the baghouse to collect the waste products and the fly ash. The booster fan is sized to provide an additional 16"H<sub>2</sub>O (12" w.c. operating) pressure drop through the absorber and baghouse. The existing stack will be used for the retrofit case.

#### 3.2.5 Waste Handling

The waste will be collected in the baghouse. A portion of the waste will be stored in a recycle storage silo, which will then be used to mix with lime slurry to increase the reagent utilization. Pug mills ( $2 \times 100\%$ ) are provided to treat the dry FGD waste before it is loaded onto the trucks for disposal or sale.

#### 3.2.6 General Support

The general support equipment includes the seal water system, instrument air compressor, makeup water system, and control room.

#### 3.2.7 Miscellaneous

Equipment considered as miscellaneous includes onsite electrical power equipment, such as transformers and grounding, which is required to supply electrical power to the FGD system.



# NATIONAL LIME ASSOCIATION

Table 3.2–1 lists the equipment used in each subsystem.

| TABLE 3.2-1     EQUIPMENT USED IN EACH SUBSYSTEM     |
|------------------------------------------------------|
| Reagent Handling and Preparation                     |
| Truck unloading system                               |
| Lime bulk storage steel silo (14 days' storage)      |
| Lime live storage transport                          |
| Lime day bin (16 hours' storage)                     |
| Slaker with screen (150% capacity)                   |
| Lime slurry tank (16 hours' storage)                 |
| Lime slurry feed pump (2 x 100%)                     |
| SO <sub>2</sub> Removal System                       |
| Spray dryer (2 x 50%)                                |
| Rotary atomizer (3 x 50% -2 operating and 1 spare)   |
| Spray dryer solid conveying                          |
| Baghouse System                                      |
| Pulse jet baghouse (air to cloth ratio – 3.5 ft/min) |
| Baghouse inlet ductwork                              |
| Baghouse outlet ductwork                             |
| Waste unloading system                               |
| Waste storage steel silo (3 days' storage)           |
| Flue Gas System                                      |
| Booster induced draft fans (2 x 50%)                 |
| Absorber inlet ductwork/dampers                      |
| Absorber outlet ductwork/dampers                     |



# NATIONAL LIME ASSOCIATION

| TABLE 3.2-1     EQUIPMENT USED IN EACH SUBSYSTEM |
|--------------------------------------------------|
| Waste Handling and Recycle System                |
| Recycle waste storage bin (16 hours' storage)    |
| Recycle waste conveying                          |
| Recycle waste slurry tank                        |
| Pug mills (2 x 100%)                             |
| General Support System                           |
| Slaking water tank                               |
| Slaking water pumps (2 x 100%)                   |
| Instrumentation/plant air compressors (2 x 50%)  |
| Miscellaneous                                    |
| Transformers/switchgear                          |
| Electrical wiring, cables, etc.                  |



## NATIONAL LIME ASSOCIATION

# 4. IDENTIFICATION OF APPLICATION CONSTRAINTS

Summarized below are the application constraints that we have identified.

## 4.1 UNIT/ABSORBER SIZE

LSD FGD systems are in operation at many facilities, ranging in size from less than 10 MW to 500 MW. However, multiple modules are required for plants greater than 250 MW to 300 MW in capacity.

## 4.2 COAL SULFUR CONTENT

LSD FGD systems are applied mainly to low-sulfur coal. Most of these systems are applied to inlet  $SO_2$  less than 2.0 lb/MBtu. These systems are based on Powder River Basin and western bituminous coal. The systems installed on low-sulfur eastern bituminous coal have  $SO_2$  concentrations as high as 3.0 lb/MBtu. Sargent & Lundy's database of dry FGD systems indicates that these systems are not installed on high-sulfur bituminous coals.

#### 4.3 **PERFORMANCE EXPECTATIONS**

The first generation of dry FGD systems was designed to achieve 70% SO<sub>2</sub> reduction efficiencies. This was done primarily to comply with the New Source Performance Standards (NSPS) for low-sulfur coals. However, further experience with Powder River Basin coal has prompted suppliers of dry FGD equipment to guarantee SO<sub>2</sub> reduction efficiencies up to 94% or 0.10 lb/MBtu, whichever is achieved first. Applying this recent experience to the FGD system described in Table3.1-1, with the inlet SO<sub>2</sub> from Powder River Basin fuel of 1.44 lb/MBtu, 94% reduction will result in an outlet emission of 0.086 lb/MBtu. This emission rate is less than 0.10 lb/Mbtu; hence, the SO<sub>2</sub> outlet of 0.10 lb/MBtu becomes the standard, which results in an overall SO<sub>2</sub> reduction efficiency of 93%. Figure 4.3-1 represents the maximum achievable SO<sub>2</sub> reduction for a dry FGD system with baghouse as it relates to the sulfur content in the coal. Figure 4.3-1 is derived from Sargent & Lundy's in-house database on the technology performance, as obtained from various suppliers of FGD systems.



## NATIONAL LIME ASSOCIATION



#### **4.4 SO\_2 REDUCTION**

Suppliers of FGD systems have guaranteed  $SO_2$  reduction efficiencies up to 94% or 0.10 lb/MBtu, whichever is achieved first, with a dry scrubber- baghouse combination. This limits the inlet  $SO_2$  level to 1.7 lb/MBtu. Suppliers of FGD systems were reluctant to provide Sargent & Lundy with higher removal guarantees, primarily due to the absence of any database.

#### 4.5 **REAGENT UTILIZATION**

The reagent utilization is limited due to the mass transfer limitations. Suppliers of FGD systems are using alkalinity in the waste by recycling the waste along with the active reagent. The alkalinity of Powder River Basin ash has resulted in good reagent utilization compared to acidic fly ashes from eastern bituminous coal. For example, to achieve a reduction efficiency of 90% SO<sub>2</sub>, a stoichiometric ratio of 1.1 could be used compared to 1.4 stoichiometric ratio for bituminous coals with waste recycling. The stoichiometric ratio for dry FGD is based on the inlet SO<sub>2</sub> concentration.

## NATIONAL LIME ASSOCIATION

#### 4.6 WASTE/BY-PRODUCT QUALITY

Sargent & Lundy

The waste product contains CaSO3, CaSO4, calcium hydroxide, and ash. This material cannot be used in the cement industry or wallboard; however, there is potential for use as agricultural soil conditioning and for preparation of bricks or aggregates by mixing with other waste components such as fly ash. If there is currently significant income from the sale of fly ash, it may be prudent to install the dry FGD/baghouse combination after the existing particulate collector, such that the fly ash is segregated from the LSD waste and can continue to be sold.

#### 4.7 ENERGY CONSUMPTION

The major energy consumption is due to the pressure drop across the dry scrubber. Almost 60% to 70% of the energy required for FGD operation is due to an increase in draft (6-8" w.c., including inlet and outlet ductwork) and 25% to 35% of the energy required is for the atomizers.

#### 4.8 **RETROFIT VERSUS NEW UNITS**

The LSD system is installed between the air heater outlet and particulate collector. Most existing units have very short ductwork between the air heater outlet and electrostatic precipitator inlet. This makes it very difficult to take the gas from the air heater outlet to the LSD equipment and return it to the electrostatic precipitator inlet. Also, most existing electrostatic precipitators are not designed to handle increased particulate loading resulting from the LSD waste products. This will require modifications to the existing electrostatic precipitator to accommodate collection of the additional particulate from the LSD. In addition, the electrostatic precipitator will capture only a small percentage of the SO<sub>2</sub> (5% to 10%), placing a high burden on the LSD for SO<sub>2</sub> removal. An added benefit of this LSD/FF combination is that the existing electrostatic precipitator can remain in service with the collected fly ash available for sale.

Considering these issues associated with using an existing electrostatic precipitator for particulate and  $SO_2$  capture downstream of a retrofit LSD, employing a new fabric filter that can achieve 15% to 20%  $SO_2$  capture and that can accommodate the LSD particulate loading, may be a more attractive alternative.



#### NATIONAL LIME ASSOCIATION

# 5. COSTS ANALYSIS

## 5.1 CAPITAL COSTS

Estimated capital costs for the dry FGD system were determined for new and retrofit applications, which includes the equipment, materials, structural, and electrical components associated with the retrofit installation of these technologies.

The costs were developed using Sargent & Lundy's database as well as price quotes obtained from manufacturers for the equipment/work needed.

The capital cost estimates provided herein are essentially "total plant cost," and include the following:

- Equipment and material
- Direct field labor
- Indirect field costs and engineering
- Contingency
- Owner's cost
- Allowance for funds during construction (AFUDC)
- Initial inventory and Spare parts (1% of the process capital)
- Startup and commissioning

Finally, the capital cost estimates provided do not include taxes and property tax. License fees and royalties are not expected for the proposed control strategies.

Salient features of each capital cost estimate prepared for FGD installations include:

- Demolition of existing ductwork to provide access to the flue gas from the air heater outlet
- Inlet and outlet ductwork to absorber and baghouse
- 2 x 50% absorbers
- Baghouse

## NATIONAL LIME ASSOCIATION

- Induced draft fan modifications for retrofit application
- Auxiliary power system upgrade (for retrofit)

No range estimate was performed to assess the relative accuracy of this budgetary estimate. Based on experience, it is believed that the relative accuracy of the estimate is  $\pm 20\%$ .

Additionally, the underlying assumption, unless specifically stated otherwise, is that the contracting arrangement for the project is large, multiple lump sum work packages. If the client expects to execute the project on an engineer, procure, construct or turnkey basis, a separate risk allocation should be added to the estimate of 5% to 20% (1.05 or 1.2 multiplier) for this method of construction, with actual value dependent on the relative risk of labor, construction difficulty, etc.

Exhibit 5–1 and Exhibit 5–2 present the capital costs for new units and retrofit units, respectively.

#### 5.2 **OPERATIONS AND MAINTENANCE COSTS**

Exhibit 5–3 and Exhibit 5–4 present the estimated operations and maintenance (O&M) expenses associated with dry FGD systems. These costs include both fixed and variable operating costs, defined as follows:

#### 5.2.1 Fixed O&M Costs

Sargent & Lundy

The fixed O&M costs determined for this study consist of sulfur oxides  $(SO_x)$  emission control technology, O&M labor, maintenance material, and administrative labor.

For purposes of this study, the installation of the FGD system has been anticipated to add an additional five operators to the current pool of operating labor for new units and eight operators for the retrofit application. It is assumed the plant layout for the retrofit application is not optimized, which would require more operating labor than for the new unit.

Maintenance material and labor costs shown herein have been estimated based on technology operating experience in the United States and Europe. The maintenance cost includes periodic replacement of atomizers and maintenance material for various subsystems, and the labor required to perform the maintenance.

## NATIONAL LIME ASSOCIATION

#### 5.2.2 Variable O&M Costs

Sargent & Lundy

Variable O&M costs determined for each technology include the cost of lime, waste disposal, bags and cages replacement, water, and power requirements. The cost of fly ash is not included in this study as it is assumed that even if the fly ash is currently disposed of or sold, the proposed configuration will not affect the current operation. For new unit operations, if the fly ash sale creates significant revenue, an electrostatic precipitator can be installed upstream of the dry FGD. This analysis assumes that the ash will be disposed of along with FGD waste for the new unit application and thus the only differential cost will be applicable to FGD waste.

No added penalty for lost production has been included due to forced downtime to maintain the FGD systems because the availability (measure of random outage rates) of FGD systems is expected to be greater than 99%.

Auxiliary power costs reflect the additional power requirements associated with the operation of the existing induced draft fans as well as the estimated power consumption for atomizers, compressor for baghouse, lime preparation system, and various electrical and control users typically needed for FGD operations. The owner will be responsible for the power cost of \$30/MWH if the power is purchased from the open grid. This cost includes the replacement energy and capacity charges.

Exhibit 5–3 and Exhibit 5–4 present the fixed and variable O&M costs for new and retrofit applications, respectively.

#### 5.3 LEVELIZED COSTS

Levelized costs, also referred to as "life cycle costs," take into account the impacts of capital costs and O&M costs during the operation of a plant over the period of analysis. The levelized fixed charge rate (impact due to capital cost) was calculated based on an assumption that a typical customer is a regulated utility. The levelized fixed charge rate includes depreciation of the property, return on capital (50% debt and 50% equity), income tax, property tax, and insurance. Based on 8.75% discount rate and 30-year or 20-year life expectancy for new or retrofit facilities, respectively, the levelized fixed charge rates are 14.50% (30-year

## NATIONAL LIME ASSOCIATION

life) and 15.43% (20-years life). The levelized cost analysis was performed based on current dollars, as most regulated utilities base their analysis on current dollars.

The levelized O&M cost factor takes into account the discount rate, escalation rate, and annuity rate. The levelized O&M cost factors were 1.30 for the 30-year period and 1.22 for the 20-year analysis.

Sargent & Lundy

# DRY FLUE GAS DESULFURIZATION TECHNOLOGY EVALUATION

PROJECT NUMBER 11311-000 SEPTEMBER 26, 2002

## NATIONAL LIME ASSOCIATION

# **Ехнівіт 5-1**

# CAPITAL COST ESTIMATES FOR NEW UNITS USING PRB AND APPALACHIAN LOW SULFUR COALS

|                                                 | DRY FGD    |       |            |                        |  |
|-------------------------------------------------|------------|-------|------------|------------------------|--|
|                                                 | PRB Coal   |       |            | Appalachian Low Sulfur |  |
| Subsystems                                      | Cost, US\$ | \$/kW | Cost, US\$ | \$/kW                  |  |
|                                                 |            |       |            |                        |  |
| Reagent Feed System                             | 3,810,000  | 7.6   | 4,385,000  | 8.8                    |  |
| SO2 Removal System                              | 11,700,000 | 23.4  | 11,400,000 | 22.8                   |  |
| Baghouse System                                 | 16,000,000 | 32.0  | 15,500,000 | 31.0                   |  |
| Flue Gas System                                 | 6,550,000  | 13.1  | 6,300,000  | 12.6                   |  |
| Waste Handling and recycle system               | 2,600,000  | 5.2   | 2,200,000  | 4.4                    |  |
| General Support Equipment                       | 550,000    | 1.1   | 550,000    | 1.1                    |  |
| Miscellaneous Equipment                         | 1,250,000  | 2.5   | 1,250,000  | 2.5                    |  |
| TOTAL PROCESS CAPITAL (TPC)                     | 42,460,000 | 85    | 41,585,000 | 83                     |  |
| General Facilities (5% of TPC)                  | 2,123,000  | 4.2   | 2,079,000  | 4.2                    |  |
| Engineering and Construction Management         | 4,246,000  | 8.5   | 4,159,000  | 8.3                    |  |
| Project Contingency (15%)                       | 7,324,000  | 14.6  | 7,173,000  | 14.3                   |  |
| TOTAL PLANT COST (TPC)                          | 56,153,000 | 112.3 | 54,996,000 | 110.0                  |  |
| Allowance for Funds (AFUDC - 3.2% of TPC)       | 1,797,000  | 3.6   | 1,760,000  | 3.5                    |  |
| Owner's Cost (5% of TPC)                        | 2,808,000  | 6.0   | 2,750,000  | 5.0                    |  |
| TOTAL PLANT INVESTMENT (TPI)                    | 60,758,000 | 121.9 | 59,506,000 | 118.5                  |  |
| Inventory Capital (Spare, 1% of TPI)            | 608,000    | 1.2   | 595,000    | 1.2                    |  |
| Initial Chemicals and Commissioning (2% of TPI) | 1,215,000  | 2.4   | 1,190,000  | 2.4                    |  |
| Royalties                                       | 0          | 0     | 0          | 0                      |  |
| TOTAL CAPITAL REQUIREMENT (TCR)                 | 62,581,000 | 126   | 61,291,000 | 122                    |  |

#### Notes:

1.0 Accuracy of Estimate +-20%

2.0 Labor cost based on regular shift operation

3.0 ID fan and electrical cost is differential

# DRY FLUE GAS DESULFURIZATION TECHNOLOGY EVALUATION

PROJECT NUMBER 11311-000 SEPTEMBER 26, 2002

## NATIONAL LIME ASSOCIATION

## **Ехнівіт 5-2**

# CAPITAL COST ESTIMATES FOR RETROFIT UNITS USING PRB AND APPALACHIAN LOW SULFUR COALS

|                                                   | DRY FGD    |       |               |            |
|---------------------------------------------------|------------|-------|---------------|------------|
|                                                   | PRB Coa    | l     | Appalachian I | _ow Sulfur |
| Subsystems                                        | Cost, US\$ | \$/kW | Cost, US\$    | \$/kW      |
|                                                   |            |       |               |            |
| Reagent Feed System                               | 4,645,000  | 9.3   | 5,338,000     | 10.7       |
| SO2 Removal System                                | 15,100,000 | 30.2  | 14,500,000    | 29.0       |
| Baghouse System                                   | 19,000,000 | 38.0  | 17,000,000    | 34.0       |
| Flue Gas System                                   | 8,690,000  | 17.4  | 8,350,000     | 16.7       |
| Waste Handling and recycle system                 | 3,400,000  | 6.8   | 2,800,000     | 5.6        |
| General Support Equipment                         | 550,000    | 1.1   | 550,000       | 1.1        |
| Miscellaneous Equipment (Additional               | 4,250,000  | 8.5   | 4,250,000     | 8.5        |
| Transformer, Switchgear)                          |            |       |               |            |
| TOTAL PROCESS CAPITAL (TPC)                       | 55,635,000 | 111   | 52,788,000    | 106        |
|                                                   |            | 5.0   |               |            |
| General Facilities (5% of TPC)                    | 2,782,000  | 5.6   | 2,639,000     | 5.3        |
| Engineering and Construction Management           | 5,564,000  | 11.1  | 5,279,000     | 10.6       |
| Project Contingency (15%)                         | 9,597,000  | 19.2  | 9,106,000     | 18.2       |
| TOTAL PLANT COST (TPC)                            | 73 578 000 | 147 2 | 69 812 000    | 139.6      |
|                                                   | 10,010,000 |       | 00,012,000    | 100.0      |
| Allowance for Funds (AFUDC - 3.2%)                | 2,354,000  | 4.7   | 2,233,984     | 4.5        |
| Owner's Cost (5% of TPC)                          | 3,679,000  | 7.0   | 3,491,000     | 7.0        |
| TOTAL PLANT INVESTMENT (TPI)                      | 79,611,000 | 158.9 | 75,536,984    | 151.1      |
|                                                   |            |       |               |            |
| Inventory Capital (Spare, same as new)            | 608,000    | 1.2   | 595,000       | 1.2        |
| Initial Chemicals and Commissioning (same as new) | 1,215,000  | 2.4   | 1,190,000     | 2.4        |
| Royalties                                         | 0          | 0     | 0             | 0          |
| · · · · · · · · · · · · · · · · · · ·             |            |       |               |            |
| TOTAL CAPITAL REQUIREMENT (TCR)                   | 81,434,000 | 163   | 77,321,984    | 155        |

#### Notes:

1.0 Accuracy of Estimate +-20%

2.0 Labor cost based on regular shift operation

3.0 ID fan and electrical cost is for adequate modifications to ID fan/motor, additional tranformers and switchgears

4.0 Medium Retrofit Difficulty assumed

# DRY FLUE GAS DESULFURIZATION TECHNOLOGY EVALUATION

PROJECT NUMBER 11311-000 SEPTEMBER 26, 2002

## NATIONAL LIME ASSOCIATION

# **EXHIBIT 5-3**

## FIXED AND VARIABLE O&M COST/LEVELIZED COSTS (NEW UNITS)

| Input for O&M Costs     PRB     Eastern Low S       1     Number of Operators (40 hrs/wk)     5     5       2     Operating labor Cost, S/hr     93     33       3     Reagent Purity, %     93     33       4     Reagent Stoichiometry     1     1     1.4       5     Reagent Roichiometry     1     1     1.4       5     Reagent Roichiometry     1     1.2     6.58       7     SO2 Removal Efficiency, %     93     94       8     SO2 Removal Cost, S/hon     1.2     1.2       11     Waste Generated - dry, th (w/o fly ash)     7.01     1.2.74       10     Waste disposal cost, S/hon     1.2     1.2       11     Water Cost, S/hog     8.0     8.0       12     Water Cost, S/hog     8.0     8.0       16     Cage Life, years     1.2     1.2       16     Cage Cost, S/cage     2.0     2.0       17     Aux. Power Requirement, MW     6.0     5.5       18     Aux. Power Cost, S/MWH                                                                                                                                                                                                                              | DRY FGD                                        |                                          |             |                    |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|-------------|--------------------|--|--|--|--|
| PRB     Eastern Low S       1     Number of Operators (40 hrs/wk)     5       2     Operating labor Cost, S/hr     50       3     Reagent Division     50       3     Reagent Stoichiom etry     1.1     1.4       4     Reagent Cost, S/hn     60     60       6     Reagent Cost, S/hn     6.9     93     94       5     Reagent Cost, S/hn     6.0     60     60       6     Reagent Cost, S/hn     2.89     4.70     12     12     12       9     Waste Generated - 4ry, thi (w/o fly ash)     7.01     12.74     10     Waste Generated - 4ry, thi (w/o fly ash)     7.01     12.74       10     Waste Generated - 4ry, thi (w/o fly ash)     7.01     12.74     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12<                                                                                                                                                                                                                                                   | Input for O&M Costs                            |                                          |             |                    |  |  |  |  |
| 1     Number of Operating (40 hrs/wk)     5     5       2     Operating labor Cost, S/In     50       3     Reagent Purity, %     93       4     Reagent Stockiometry     1.1     1.4       5     Reagent Reagent Stockiometry     1.1     1.4       5     Reagent Requirement, t/h     3.22     6.58       7     SO 2 Removal Efficiency, %     93     94       8     SO 2 Removal, t/h     2.89     4.70       9     Waste Generated - dry, t/h (w/o fly ash)     7.01     12.74       11     Water Cost, S/1000 gat     0.75     0.75       12     Water Cost, S/1000 gat     0.75     0.75       13     Bag Life, years     12     12       14     Bag Cost, S/scage     20     20       15     Cage Life, years     12     12       16     Cage Cost, S/scage     20     20       17     Aux, Power Requirement, MW     6.0     55       16     Aux, Power Requirement, MW     6.0     55       10                                                                                                                                                                                                                                |                                                |                                          | PRB         | Eastern Low S      |  |  |  |  |
| 2     Operating labor Cost, \$/hr     50     50       3     Reagent Divit, %     93     93       4     Reagent Stolchiometry     1.1     1.4       5     Reagent Cost, \$/hn     6.0     60       6     Reagent Cost, \$/hn     3.22     6.58       7     SO 2 Removed, t/h     2.89     4.70       9     Waste Generated - dry, t/h (w/o fly ash)     7.01     12.74       10     Waste Generated - dry, t/h (w/o fly ash)     7.01     12.74       11     Water Requirement, gpm     402     324       12     Water Cost, \$/hog     80     80       13     Bag Life, years     3     3       14     Bag Cost, \$/hag     80     80       15     Cage Life, years     12     12       16     Cage Cost, \$/kWH     30     30       19     Load Factor, %     80     80       21     Cost, \$/hWH     30     30       19     Load Factor, %     80     80       21     Admi                                                                                                                                                                                                                                                           | 1                                              | Number of Operators (40 hrs/wk)          | 5           | 5                  |  |  |  |  |
| 3   Reagent Purity, %   93   93     4   Reagent Cost, \$/ton   60   60     6   Reagent Cost, \$/ton   60   60     6   Reagent Requirement, t/h   3.22   6.59     7   SO2 Removed, t/h   2.89   4.70     9   Waste Generated - dry, t/h (w/o fly ash)   7.01   12.74     11   Waste Generated - dry, t/h (w/o fly ash)   7.01   12.74     11   Waste Generated - dry, t/h (w/o fly ash)   7.01   12.74     11   Water Cost, \$/1000 gal   0.75   0.75     13   Bag Life, years   30   30     14   Bag Cost, \$/sbag   80   80   80     15   Cage Life, years   12   12   12     16   Cage Cost, \$/AWH   30   30   30     19   Load Factor, %   80   80     10   Operating Labor Cost (\$/yr)   \$520,000   \$520,000     2.Maintenance Materials Cost (\$/yr)   \$1,019,000   \$998,000     3.Maintenance Labor Cost (\$/yr)   \$679,000   \$665,000     4. Administrative                                                                                                                                                                                                                                                             | 2                                              | Operating labor Cost, \$/hr              | 50          | 50                 |  |  |  |  |
| 4   Reagent Cost, \$100   1.1   1.4     5   Reagent Requirement, t/h   3.22   6.59     7   SO 2 Removed, t/h   2.89   3.94     8   SO 2 Removed, t/h   2.89   4.70     9   Waste Generated - dry, t/h (w/o fly ash)   7.01   12.74     10   Waste Generated - dry, t/h (w/o fly ash)   7.01   12.74     10   Waste Generated - dry, t/h (w/o fly ash)   7.01   12.74     11   Water Requirement, gpm   402   324     12   Water Requirement, gpm   402   324     14   Bag Cost, \$/toag   80   80     15   Cage Life, years   3   3     16   Cage Cost, \$/rage   20   20     17   Aux. Power Requirement, MW   6.0   5.5     18   Aux. Power Cost, \$/MWH   30   30     19   Load Factor, %   80   80     20.   Stop   \$520,000   \$520,000     21. Maintenance Materials Cost (\$/yr)   \$1,019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$679,000   \$                                                                                                                                                                                                                                                              | 3                                              | Reagent Purity, %                        | 93          | 93                 |  |  |  |  |
| 5   Reagent Cost, \$/ton   60   60     6   Reagent Requirement, t/h   3.22   6.59     7   SO2 Removal Efficiency, %   93   94     8   SO2 Removed, t/h   2.89   4.70     9   Waste Generated - dry, t/h (w/o fly ash)   7.01   12.71     10   Waste Generated - dry, t/h (w/o fly ash)   7.01   12.72     11   Waste Generated - dry, t/h (w/o fly ash)   0.75   0.75     12   Waste Cost, \$/food gal   0.75   0.75     13   Bag Life, years   3   3     14   Bag Cost, \$/foag   80   80   80     15   Cage Life, years   12   12   12     16   Cage Cost, \$/foag   2.0   20   20     17   Aux, Power Requirement, MW   6.0   5.5   18     10   Load Factor, %   80   80   80     15   Cage Cost, \$/fwH   30   30     2.0   Aux. Power Requirement, MW   520,000   \$2,520,000     2.1   Maintenance Materiais Cost (\$/yr)   \$1,019,000 <td< td=""><td>4</td><td>Reagent Stoichiometry</td><td>1.1</td><td>1.4</td></td<>                                                                                                                                                                                                        | 4                                              | Reagent Stoichiometry                    | 1.1         | 1.4                |  |  |  |  |
| 6   Reagent Requirement, t/h   3.22   6.59     7   SO2 Removed, t/h   2.89   9.4     8   SO2 Removed, t/h   2.89   4.70     9   Waste Generated - dry, t/h (w/o fly ash)   7.01   12.74     10   Waste Generated - dry, t/h (w/o fly ash)   7.01   12.74     11   Water Cost, \$/1000 gal   0.75   0.75     11   Water Cost, \$/1000 gal   0.75   0.75     11   Water Cost, \$/1000 gal   0.75   0.75     12   12   12   12   12     14   Bag Cost, \$/1000 gal   0.75   0.75   0.75     13   Bag Life, years   3   3   3     16   Cage Cost, \$/2cage   2.0   2.00   2.00     17   Aux. Power Requirement, MW   6.0   5.5   3.0   30     19   Load Factor, %   80   80   80     2. Maintenance Materials Cost (\$/yr)   \$520,000   \$520,000   \$520,000     2. Maintenance Labor Cost (\$/yr)   \$679,000   \$665,000   \$356,000     4. Administrative and Su                                                                                                                                                                                                                                                                      | 5                                              | Reagent Cost, \$/ton                     | 60          | 60                 |  |  |  |  |
| 7   SO2 Removal Efficiency, %   93   94     8   SO2 Removal (th   2.89   4.70     9   Waste disposicost, \$/t000 gai   7.01   12.71     11   Waste disposicost, \$/t000 gai   0.75   0.75     12   Waste disposicost, \$/t000 gai   0.75   0.75     13   Bag Life, years   3   3     14   Bag Cost, \$/t000 gai   0.75   0.75     15   Cage Life, years   12   12     16   Cage Cost, \$/cage   20   20     7   Aux, Power Requirement, MW   6.0   5.5     18   Aux, Power Requirement, MW   30   30     10   Load Factor, %   80   80     10   Operating Labor Cost (\$/yr)   \$1,019,000   \$996,000     2. Maintenance Materials Cost (\$/yr)   \$1,019,000   \$3560,000     3. Maintenance Labor Cost (\$/yr)   \$665,000   \$2,539,000     4. Administrative and Support Labor =   \$2360,000   \$2,539,000     2. Waste Disposal Cost for FGD System =   \$1,354,000   \$1,071,000     (Dry basis)   3.   \$2 <td>6</td> <td>Reagent Requirement, t/h</td> <td>3.22</td> <td>6.59</td>                                                                                                                                           | 6                                              | Reagent Requirement, t/h                 | 3.22        | 6.59               |  |  |  |  |
| 8   SO2 Removed, t/h   2.89   4.70     9   Waste Generated - dry, t/h (w/o fly ash)   7.01   12.74     10   Waste Generated - dry, t/h (w/o fly ash)   12   12     11   Waste Garenated - dry, t/h (w/o fly ash)   12   12     12   Water Requirement, gpm   402   324     12   Water Cost, \$/1000 gal   0.75   0.75     13   Bag Life, years   3   3     14   Bag Cost, \$/bag   80   80     15   Cage Cost, \$/bag   20   20     16   Cage Cost, \$/dog   20   20     17   Aux. Power Requirement, MW   6.0   5.5     18   Aux. Power Cost, \$/M H   30   30     10   Derating Labor Cost (\$/yr)   \$520,000   \$520,000     2. Maintenance Labor Cost (\$/yr)   \$520,000   \$520,000     3. Maintenance Labor Cost (\$/yr)   \$679,000   \$665,000     4. Administrative and Support Labor =   \$360,000   \$356,000     7otal Yearly Fixed O&M Cost =   \$2,578,000   \$2,769,000     2. Waste Disposal Cost for FGD System =                                                                                                                                                                                                   | 7                                              | SO2 Removal Efficiency, %                | 93          | 94                 |  |  |  |  |
| 9   Waste Generated - dry, t/h (W/o fly ash)   7.01   12.74     10   Waste disposal cost, \$/ion   12   12     11   Waste disposal cost, \$/ion   324     12   Waste disposal cost, \$/ion   324     12   Waste Cost, \$/ion   31     14   Bag Life, years   3   33     15   Cage Life, years   12   12     16   Cage Life, years   30   30     17   Aux. Power Requirement, MW   6.0   5.5     18   Aux. Power Requirement, MW   80   80     19   Load Factor, %   80   80     20   Zono   \$520,000   \$520,000     2. Maintenance Materials Cost (\$/yr)   \$1019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$679,000   \$665,000     4. Administrative and Support Labor =   \$360,000   \$2,539,000     7 total Yearly Fixed O&M Cost =   \$1,354,000<                                                                                                                                                                                                                                                  | 8                                              | SO2 Removed, t/h                         | 2.89        | 4.70               |  |  |  |  |
| 10   Waste disposal cost, \$/ton   12   12     11   Water Requirement, gpm   402   324     12   Water Cost, \$/1000 gal   0.75   0.75     13   Bag Cost, \$/bag   80   80     14   Bag Cost, \$/bag   80   80     15   Cage Life, years   12   12     16   Cage Cost, \$/cage   20   20     17   Aux. Power Requirement, MW   6.0   5.5     18   Aux. Power Cost, \$/MWH   30   30     19   Load Factor, %   80   80     PRB   Eastern Low Sulfur     Fixed O&M Costs   1   0   998,000     2. Maintenance Materials Cost (\$/yr)   \$1019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$679,000   \$366,000     4. Administrative and Support Labor =   \$360,000   \$3356,000     7otal Yeariy Fixed O&M Cost =   \$2,578,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$269,000   \$1,071,000     (Dry basis)   3.0   \$0   \$0     3. Credit for Byproduct =                                                                                                                                                                                                                                        | 9                                              | Waste Generated - dry, t/h (w/o fly ash) | 7.01        | 12.74              |  |  |  |  |
| 11   Water Requirement, gpm   402   324     12   Water Cost, \$/1000 gal   0.75   0.75     13   Bag Life, years   3   3     14   Bag Cost, \$/bag   80   80     15   Cage Life, years   12   12     16   Cage Cost, \$/cage   20   20     17   Aux. Power Requirement, MW   6.0   5.5     18   Aux. Power Requirement, MW   6.0   5.5     18   Aux. Power Cost, \$/MW H   30   30     19   Load Factor, %   80   80     PRB   Eastern Low Sulfur     Fixed O&M Costs     1. Operating Labor Cost (\$/yr)   \$1,019,000   \$998,000     2. Maintenance Labor Cost (\$/yr)   \$1,019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$6679,000   \$665,000     4. Administrative and Support Labor =   \$360,000   \$356,000     7 total Yearly Fixed O&M Cost =   \$2,578,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$1,354,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$375,000                                                                                                                                                                                                    | 10                                             | W aste disposal cost, \$/ton             | 12          | 12                 |  |  |  |  |
| 12   Water Cost, \$/1000 gal   0.75   0.75     13   Bag Life, years   3   3     14   Bag Cost, \$/bag   80   80     15   Cage Life, years   12   12     16   Cage Cost, \$/scage   20   20     17   Aux. Power Requirement, MW   6.0   5.5     18   Aux. Power Cost, \$/MW H   30   30     19   Load Factor, %   80   80     PRB   Eastern Low Sulfur     Fixed O&M Costs     1.   Operating Labor Cost (\$/yr)   \$520,000   \$520,000     2. Maintenance Materials Cost (\$/yr)   \$1,019,000   \$998,000     3.   Maintenance Labor Cost (\$/yr)   \$6679,000   \$665,000     4. Administrative and Support Labor =   \$2,578,000   \$2,539,000     Total Yearly Fixed O&M Cost =     1.   Reagent Costs =   \$1,354,000   \$2,769,000     2.   Waste Disposal Cost for FGD System =   \$1,071,000   \$0     3.   Credit for Byproduct =   \$0   \$0   \$0     4.   Bag replacement=                                                                                                                                                                                                                                                | 11                                             | Water Requirement, gpm                   | 402         | 324                |  |  |  |  |
| 13   Bag Life, years   3   3     14   Bag Cost, S/bag   80   80     15   Cage Life, years   12   12     16   Cage Cost, S/cage   20   20     17   Aux. Power Requirement, MW   6.0   5.5     18   Aux. Power Cost, S/MW H   30   30     19   Load Factor, %   80   80     PRB   Eastern Low Sulfur     Fixed O&M Costs     1. Operating Labor Cost (\$/yr)   \$1.019,000   \$998,000     2. Maintenance Materials Cost (\$/yr)   \$1.019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$679,000   \$665,000     4. Administrative and Support Labor =   \$360,000   \$3356,000     Total Yearly Fixed O&M Cost =   \$2,578,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$1,354,000   \$2,769,000     3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$23,000   \$21,000     5. Cage replacement=   \$23,000   \$21,000     6. Water Cost=   \$1,261,000   \$1,156,000     7. Addit                                                                                                                                                                                                     | 12                                             | Water Cost, \$/1000 gal                  | 0.75        | 0.75               |  |  |  |  |
| 14   Bag Cost, \$/bag   80   80     15   Cage Life, years   12   12     16   Cage Cost, \$/cage   20   20     17   Aux. Power Requirement, MW   6.0   5.5     18   Aux. Power Cost, \$/MW H   30   30     19   Load Factor, %   80   80     PRB   Eastern Low Sulfur     Fixed O&M Costs     1. Operating Labor Cost (\$/yr)   \$520,000   \$520,000     2. Maintenance Materials Cost (\$/yr)   \$1,019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$6679,000   \$665,000     4. Administrative and Support Labor =   \$360,000   \$356,000     Total Yearly Fixed O&M Cost =     1. Reagent Costs =   \$1,354,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$589,000   \$1,071,000     3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$23,000   \$21,000     5. Cage replacement=   \$22,000   \$21,000     6. Water Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,00                                                                                                                                                                                   | 13                                             | Bag Life, years                          | 3           | 3                  |  |  |  |  |
| 15   Cage Life, years   12   12     16   Cage Cost, \$/cage   20   20     17   Aux. Power Requirement, MW   6.0   5.5     18   Aux. Power Cost, \$/MW H   30   30     19   Load Factor, %   80   80     PRB   Eastern Low Sulfur     Fixed O&M Costs     1. Operating Labor Cost (\$/yr)   \$1.019,000   \$998,000     2. Maintenance Materials Cost (\$/yr)   \$1.019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$679,000   \$665,000     4. Administrative and Support Labor =   \$360,000   \$356,000     Total Yearly Fixed O&M Cost =   \$2,578,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$1,354,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$375,000   \$341,000     3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$21,000     5. Cage replacement=   \$127,000   \$102,000     6. W ater Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000 <td>14</td> <td>Bag Cost, \$/bag</td> <td>80</td> <td>80</td>                                                                                      | 14                                             | Bag Cost, \$/bag                         | 80          | 80                 |  |  |  |  |
| 16   Cage Cost, \$/cage   20   20     17   Aux. Power Requirement, MW   6.0   5.5     18   Aux. Power Cost, \$/MWH   30   30     19   Load Factor, %   80   80     PRB   Eastern Low Sulfur     Fixed O&M Costs     1. Operating Labor Cost (\$/yr)   \$520,000   \$520,000     2. Maintenance Materials Cost (\$/yr)   \$1,019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$665,000   \$356,000     4. Administrative and Support Labor =   \$360,000   \$356,000     Variable Operating Costs   1.   Reagent Costs =   \$1,354,000     2. W aste Disposal Cost for FGD System =   \$1,354,000   \$2,769,000     2. W aste Disposal Cost for FGD System =   \$30   \$0     4. Bag replacement=   \$375,000   \$21,000     5. Cage replacement=   \$127,000   \$102,000     6. W ater Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     7. Additional Power Costs* =   \$,729,000   \$,460,000     7. Additional Power Costs* =   \$,729,000                                                                                                                                 | 15                                             | Cage Life, years                         | 12          | 12                 |  |  |  |  |
| 17   Aux. Power Requirement, MW   6.0   5.5     18   Aux. Power Cost, \$/MWH   30   30     19   Load Factor, %   80   80     PRB   Eastern Low Sulfur     Fixed O&M Costs     1. Operating Labor Cost (\$/yr)   \$520,000   \$520,000     2. Maintenance Materials Cost (\$/yr)   \$1,019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$679,000   \$665,000     4. Administrative and Support Labor =   \$360,000   \$356,000     Total Yearly Fixed O&M Cost =   \$2,578,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$689,000   \$1,071,000     (Dry basis)   3.   \$2   \$30     3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$341,000     5. Cage replacement=   \$1,261,000   \$102,000     6. Water Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   \$,729,000   \$,460,000                                                                                                                                                                                                    | 16                                             | Cage Cost, \$/cage                       | 20          | 20                 |  |  |  |  |
| 18   Aux. Power Cost, \$/MWH   30   30     19   Load Factor, %   80   80     PRB   Eastern Low Sulfur     Fixed O&M Costs     1. Operating Labor Cost (\$/yr)   \$520,000   \$520,000     2. Maintenance Materials Cost (\$/yr)   \$1,019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$6779,000   \$665,000     4. Administrative and Support Labor =   \$360,000   \$356,000     4. Administrative and Support Labor =   \$2,578,000   \$2,539,000     Variable Operating Costs   1. Reagent Costs =   \$1,354,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$589,000   \$1,071,000     (Dry basis)   3.   \$30   \$30     3. Credit for Byproduct =   \$0   \$0   \$0     4. Bag replacement=   \$23,000   \$21,000   \$341,000     5. Cage replacement=   \$1,261,000   \$1,156,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     7. Additional Power Costs* =   \$1,261,000   \$1,460,000     Total Yearly Variable O&M Cost =   \$1,261,000   \$1,460,000                                                                                                                      | 17                                             | Aux. Power Requirement, MW               | 6.0         | 5.5                |  |  |  |  |
| 19     Load Factor, %     80     80       PRB     Eastern Low Sulfur       Fixed O&M Costs       1. Operating Labor Cost (\$/yr)     \$520,000     \$520,000       2. Maintenance Materials Cost (\$/yr)     \$1,019,000     \$998,000       3. Maintenance Labor Cost (\$/yr)     \$6679,000     \$665,000       4. Administrative and Support Labor =     \$360,000     \$356,000       Total Yearly Fixed O&M Cost =       \$2,578,000     \$2,769,000       Variable Operating Costs       1. Reagent Costs =     \$1,354,000     \$2,769,000       2,000     \$1,071,000       (Dry basis)     \$0     \$0     \$0       3. Credit for Byproduct =     \$0     \$0       \$2,000     \$21,000       5. Cage replacement=     \$23,000     \$21,000       6. Water Cost=     \$127,000     \$102,000       7. Additional Power Costs* =     \$1,261,000     \$1,156,000       Total Yearly Variable O&M Cost =     \$3,729,000     \$,460,000        \$3,729,000     \$,4                                                                                                                                                          | 18                                             | Aux. Power Cost, \$/MWH                  | 30          | 30                 |  |  |  |  |
| PRB     Eastern Low Sulfur       Fixed O&M Costs     1. Operating Labor Cost (\$/yr)     \$520,000     \$520,000       2. Maintenance Materials Cost (\$/yr)     \$1,019,000     \$998,000       3. Maintenance Labor Cost (\$/yr)     \$679,000     \$665,000       4. Administrative and Support Labor =     \$360,000     \$356,000       Total Yearly Fixed O&M Cost =     \$2,578,000     \$2,539,000       Variable Operating Costs     1. Reagent Costs =     \$1,354,000     \$2,769,000       2. W aste Disposal Cost for FGD System =     \$589,000     \$1,071,000       (Dry basis)     3. Credit for Byproduct =     \$0     \$0       3. Credit for Byproduct =     \$375,000     \$21,000       6. Water Cost=     \$127,000     \$102,000       7. Additional Power Costs* =     \$1,261,000     \$1,156,000       Total Yearly Variable O&M Cost =     \$1,261,000     \$1,156,000                                                                                                                                                                                                                                    | 19                                             | Load Factor, %                           | 80          | 80                 |  |  |  |  |
| PRB     Eastern Low Sulfur       Fixed O&M Costs     1. Operating Labor Cost (\$/yr)     \$520,000     \$520,000       2. Maintenance Materials Cost (\$/yr)     \$1,019,000     \$998,000       3. Maintenance Labor Cost (\$/yr)     \$6679,000     \$665,000       4. Administrative and Support Labor =     \$360,000     \$356,000       Total Yearly Fixed O&M Cost =     \$2,578,000     \$2,539,000       Variable Operating Costs     1. Reagent Costs =     \$1,354,000     \$2,769,000       2. W aste Disposal Cost for FGD System =     \$589,000     \$1,071,000       3. Credit for Byproduct =     \$0     \$0     \$0       4. Bag replacement=     \$375,000     \$21,000     \$21,000       5. Cage replacement=     \$1,261,000     \$102,000     \$102,000       7. Additional Power Costs* =     \$1,261,000     \$1,156,000     \$1,156,000       Total Yearly Variable O&M Cost =     \$3,729,000     \$,460,000     \$1,460,000                                                                                                                                                                               |                                                |                                          |             |                    |  |  |  |  |
| Fixed O&M Costs     \$520,000       1. Operating Labor Cost (\$/yr)     \$520,000       2. Maintenance Materials Cost (\$/yr)     \$1,019,000       3. Maintenance Labor Cost (\$/yr)     \$679,000       3. Maintenance Labor Cost (\$/yr)     \$679,000       4. Administrative and Support Labor =     \$360,000       5. Administrative and Support Labor =     \$360,000       7 total Yearly Fixed O&M Cost =     \$2,578,000       9. Variable Operating Costs     \$1,354,000       1. Reagent Costs =     \$1,354,000       2. W aste Disposal Cost for FGD System =     \$589,000       (Dry basis)     \$0       3. Credit for Byproduct =     \$0       4. Bag replacement=     \$375,000       5. Cage replacement=     \$127,000       6. Water Cost=     \$1,261,000       7. Additional Power Costs* =     \$1,261,000       7. Additional Power Costs* =     \$1,261,000       5. Cage replacement=     \$1,261,000       5. Additional Power Costs* =     \$1,261,000       7. Additional Power Costs* =     \$1,261,000       7. Additional Power Costs* =     \$1,261,000       7. Additional Power Costs* =     < |                                                |                                          | PRB         | Eastern Low Sulfur |  |  |  |  |
| 1. Operating Labor Cost (\$/yr)   \$520,000   \$520,000     2. Maintenance Materials Cost (\$/yr)   \$1,019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$679,000   \$6665,000     4. Administrative and Support Labor =   \$360,000   \$356,000     Total Yearly Fixed O&M Cost =   \$2,578,000   \$2,539,000     Variable Operating Costs   ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fixed O                                        | & M Costs                                |             |                    |  |  |  |  |
| 1. Operating Eddo Ost (0/1)   \$120,000   \$020,000     2. Maintenance Materials Cost (\$/yr)   \$1,019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$679,000   \$665,000     4. Administrative and Support Labor =   \$360,000   \$356,000 <b>7 total Yearly Fixed O&amp;M Cost =</b> \$2,578,000   \$2,539,000 <b>Variable Operating Costs</b> 1. Reagent Costs =   \$1,354,000   \$2,769,000     2. W aste Disposal Cost for FGD System =   \$589,000   \$1,071,000     (Dry basis)   3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$241,000     5. Cage replacement=   \$127,000   \$102,000     6. W ater Cost=   \$1,261,000   \$1,156,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   \$,460,000     Total YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                             | 1 Oner                                         | ating Labor Cost (\$/vr)                 | \$520.000   | \$520.000          |  |  |  |  |
| 2. Maintenance Materials Cost (\$/yr)   \$1,019,000   \$998,000     3. Maintenance Labor Cost (\$/yr)   \$679,000   \$665,000     4. Administrative and Support Labor =   \$360,000   \$3356,000     Total Yearly Fixed O&M Cost =   \$2,578,000   \$2,539,000     Variable Operating Costs   \$1,354,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$589,000   \$1,071,000     (Dry basis)   \$0   \$0     3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$21,000     5. Cage replacement=   \$23,000   \$21,000     6. Water Cost=   \$1,261,000   \$1,156,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   \$,729,000   \$,460,000     Total Yearly FixED AND VARIABLE O&M COS   \$,307,000   7,999,000                                                                                                                                                                                                                                                                                                                      | r. open                                        |                                          | \$520,000   | \$520,000          |  |  |  |  |
| 3. Maintenance Labor Cost (\$/yr)   \$679,000   \$665,000     4. Administrative and Support Labor =   \$360,000   \$356,000     Total Yearly Fixed O&M Cost =   \$2,578,000   \$2,539,000     Variable Operating Costs   \$1,354,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$1354,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$589,000   \$1,071,000     (Dry basis)   3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$24,000     5. Cage replacement=   \$127,000   \$21,000     6. Water Cost=   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   \$1,460,000     Total Yearly Variable O&M Cost =   3,729,000   \$1,999,000                                                                                                                                                                                                                                                                                                                                                                                                    | 2. Maintenance Materials Cost (\$/yr)          |                                          | \$1,019,000 | \$998,000          |  |  |  |  |
| 4. Administrative and Support Labor =   \$360,000   \$356,000     Total Yearly Fixed O&M Cost =   \$2,578,000   \$2,539,000     Variable Operating Costs   \$1,354,000   \$2,769,000     1. Reagent Costs =   \$1,354,000   \$2,769,000     2. W aste Disposal Cost for FGD System =   \$589,000   \$1,071,000     (Dry basis)   3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$241,000     5. Cage replacement=   \$23,000   \$21,000     6. W ater Cost=   \$1,261,000   \$1,156,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   \$,460,000     TOTAL YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                   | 3. Maintenance Labor Cost (\$/vr)              |                                          | \$679,000   | \$665,000          |  |  |  |  |
| 4. Administrative and Support Labor =   \$360,000   \$356,000     Total Yearly Fixed O&M Cost =   \$2,578,000   \$2,539,000     Variable Operating Costs   \$1,354,000   \$2,769,000     1. Reagent Costs =   \$1,354,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$589,000   \$1,071,000     (Dry basis)   3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$341,000     5. Cage replacement=   \$23,000   \$21,000     6. Water Cost=   \$1,27,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   \$,460,000     Total YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                          | ¢200.000    | \$250.000          |  |  |  |  |
| Total Yearly Fixed O&M Cost =   \$2,578,000   \$2,539,000     Variable Operating Costs   \$1,354,000   \$2,769,000     1. Reagent Costs =   \$1,354,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$589,000   \$1,071,000     (Dry basis)   3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$341,000     5. Cage replacement=   \$23,000   \$21,000     6. Water Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   \$,460,000     TOTAL YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4. Aumi                                        | nistrative and Support Labor –           | \$360,000   | \$350,000          |  |  |  |  |
| Variable Operating Costs       1. Reagent Costs =     \$1,354,000     \$2,769,000       2. Waste Disposal Cost for FGD System =     \$589,000     \$1,071,000       (Dry basis)     3. Credit for Byproduct =     \$0     \$0       4. Bag replacement=     \$375,000     \$341,000       5. Cage replacement=     \$23,000     \$21,000       6. Water Cost=     \$1,261,000     \$1,156,000       7. Additional Power Costs* =     \$1,261,000     \$1,156,000       Total Yearly Variable O&M Cost =     3,729,000     \$,460,000       TOTAL YEARLY FIXED AND VARIABLE O&M COS     6,307,000     7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Yearly Fixed O&M Cost =                  |                                          | \$2,578,000 | \$2,539,000        |  |  |  |  |
| 1. Reagent Costs =   \$1,354,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$589,000   \$1,071,000     (Dry basis)   \$0   \$0     3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$341,000     5. Cage replacement=   \$23,000   \$21,000     6. Water Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   5,460,000     TOTAL YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Variable Operating Costs                       |                                          |             |                    |  |  |  |  |
| 1. Reagent Costs =   \$1,354,000   \$2,769,000     2. Waste Disposal Cost for FGD System =   \$589,000   \$1,071,000     (Dry basis)   3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$341,000     5. Cage replacement=   \$23,000   \$21,000     6. Water Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   5,460,000     TOTAL YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                                          |             |                    |  |  |  |  |
| 2. Waste Disposal Cost for FGD System = (Dry basis)   \$589,000   \$1,071,000     3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$341,000     5. Cage replacement=   \$23,000   \$21,000     6. Water Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   5,460,000     TOTAL YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | т. кеад                                        | ent costs =                              | \$1,354,000 | \$2,769,000        |  |  |  |  |
| 3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$341,000     5. Cage replacement=   \$23,000   \$21,000     6. Water Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   5,460,000     TOTAL YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.Wast                                         | e Disposal Cost for FGD System =         | \$589,000   | \$1,071,000        |  |  |  |  |
| 3. Credit for Byproduct =   \$0   \$0     4. Bag replacement=   \$375,000   \$341,000     5. Cage replacement=   \$23,000   \$21,000     6. Water Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   5,460,000     TOTAL YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Dry basis)                                    |                                          |             |                    |  |  |  |  |
| 4. Bag replacement=   \$375,000   \$341,000     5. Cage replacement=   \$23,000   \$21,000     6. Water Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   5,460,000     TOTAL YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3. Credi                                       | t for Byproduct =                        | \$0         | \$0                |  |  |  |  |
| 5. Cage replacement=   \$23,000   \$21,000     6. Water Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   5,460,000     TOTAL YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4. Bag replacement=                            |                                          | \$375,000   | \$341,000          |  |  |  |  |
| 5. Cage replacement-   \$23,000   \$21,000     6. Water Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   5,460,000     TOTAL YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                          | \$33,000    | ¢ 2.1.000          |  |  |  |  |
| 6. Water Cost=   \$127,000   \$102,000     7. Additional Power Costs* =   \$1,261,000   \$1,156,000     Total Yearly Variable O&M Cost =   3,729,000   5,460,000     TOTAL YEARLY FIXED AND VARIABLE O&M COS   6,307,000   7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5. Cage replacement=                           |                                          | \$23,000    | \$21,000           |  |  |  |  |
| 7. Additional Power Costs* =     \$1,261,000     \$1,156,000       Total Yearly Variable O&M Cost =     3,729,000     5,460,000       TOTAL YEARLY FIXED AND VARIABLE O&M COS     6,307,000     7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.Wate                                         | r Cost=                                  | \$127,000   | \$102,000          |  |  |  |  |
| Total Yearly Variable O&M Cost =     3,729,000     5,460,000       TOTAL YEARLY FIXED AND VARIABLE O&M COS     6,307,000     7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.Addit                                        | ional Power Costs* =                     | \$1,261,000 | \$1,156,000        |  |  |  |  |
| TOTAL YEARLY FIXED AND VARIABLE O&M COS 6,307,000 7,999,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tota                                           | l Yearly Variable O&M Cost =             | 3,729,000   | 5,460,000          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL YEARLY FIXED AND VARIABLE O&M COS 6,307, |                                          |             | 7,999,000          |  |  |  |  |

\* Includes the power requirement for reagent preparation and handling system, ID fan for 12" w.c. pressure drop, power for SO2 Control System (rotary atomizer), and power requirement for baghouse



PROJECT NUMBER 11311-000 SEPTEMBER 26, 2002

# NATIONAL LIME ASSOCIATION

#### Levelized Costs Inputs for Levelized Costs

|   |                                    | PRB   | Eastern Low S |
|---|------------------------------------|-------|---------------|
| 1 | FGD System Life, years             | 30    | 30            |
| 2 | Capital Cost Levelization Factor   | 14.5  | 14.5          |
| 3 | Discount rate, %/yr                | 8.75  | 8.75          |
| 4 | Inflation Rate, %                  | 2.5   | 2.5           |
| 5 | Operating Cost Levelization Factor | 1.30  | 1.30          |
|   | Total Capital Cost, M\$            | 62.6  | 61.3          |
|   | Levelized capital Cost, MM\$/yr    | 9.07  | 8.89          |
|   | Levelized O&M Cost, MM\$/yr        | 8.20  | 10.40         |
|   | Total Levelized Cost, MM\$/yr      | 17.27 | 19.29         |
|   | Total cents/kW-hr                  | 0.49  | 0.55          |

# DRY FLUE GAS DESULFURIZATION TECHNOLOGY EVALUATION

PROJECT NUMBER 11311-000 SEPTEMBER 26, 2002

#### NATIONAL LIME ASSOCIATION

## **Ехнівіт 5-4**

## FIXED AND VARIABLE O&M COST/LEVELIZED COSTS (RETROFIT UNITS)

DRY FGD

#### Input for O&M Costs PRB Eastern Low S Number of Operators (40 hrs/wk) 8 8 2 Operating labor Cost, \$/hr 50 50 3 Reagent Purity, % 93 93 4 Reagent Stoichiometry 1.1 1.4 5 Reagent Cost, \$/ton 60 60 6 Reagent Requirement, t/h 3.22 6.59 SO2 Removal Efficiency, % 93 94 8 SO2 Removed, t/h 2.89 4.70 Waste Generated - dry, t/h (w/o fly ash) 9 7.01 12.74 Waste disposal cost, \$/ton 10 12 12 402 11 Water Requirement, gpm 324 Water Cost, \$/1000 gal 12 0.75 0.75 Bag Life, years Bag Cost, \$/bag 13 3 3 80 14 80 Cage Life, years 15 12 12 Cage Cost, \$/cage Aux. Power Requirement, MW Aux. Power Cost, \$/MWH 20 20 16 17 6.0 5.5 18 30 30 Load Factor, % 80 80 19 PRB Eastern Low Sulfur Fixed O&M Costs 1. Operating Labor Cost (\$/yr) \$832.000 \$832.000 \$998,000 2. Maintenance Materials Cost (\$/yr) \$1,019,000 3. Maintenance Labor Cost (\$/yr) \$679,000 \$665,000 4. Administrative and Support Labor = \$453,000 \$449,000 Total Yearly Fixed O&M Cost = \$2,983,000 \$2,944,000 Variable Operating Costs 1. Reagent Costs = \$1,354,000 \$2,769,000 2. Waste Disposal Cost for FGD System = \$589,000 \$1,071,000 (Drv basis)

3. Credit for Byproduct = \$0 \$0 4. Bag replacement= \$375,000 \$341,000 \$23,000 \$21,000 5. Cage replacement= 6. Water Cost= \$127,000 \$102,000 7. Additional Power Costs\* = \$1,261,000 \$1,156,000 3,729,000 5,460,000 Total Yearly Variable O&M Cost = TOTAL YEARLY FIXED AND VARIABLE O&M COS 6,712,000 8,404,000

\* Includes the power requirement for reagent preparation and handling system, ID fan for 12" w.c. pressure drop, power for SO2 Control System (rotary atomizer), and power requirement for baghouse

PROJECT NUMBER 11311-000 SEPTEMBER 26, 2002

# NATIONAL LIME ASSOCIATION

#### Levelized Costs Inputs for Levelized Costs

Sargent & Lundy

|   |                                    | PRB   | Eastern Low S |
|---|------------------------------------|-------|---------------|
| 1 | FGD System Life, years             | 20    | 20            |
| 2 | Capital Cost Levelization Factor   | 15.43 | 15.43         |
| 3 | Discount rate, %/yr                | 8.75  | 8.75          |
| 4 | Inflation Rate, %                  | 2.5   | 2.5           |
| 5 | Operating Cost Levelization Factor | 1.22  | 1.22          |
|   | Total Capital Cost, M\$            | 81.4  | 77.3          |
|   | Levelized capital Cost, MM\$/yr    | 12.57 | 11.93         |
|   | Levelized O&M Cost, MM\$/yr        | 8.19  | 10.25         |
|   | Total Levelized Cost, MM\$/yr      | 20.75 | 22.18         |
|   | Total cents/kW-hr                  | 0.59  | 0.63          |