NLA Mercury Project Arline Seeger & Mindy Ochs NLA Environmental Committee Meeting June 13, 2011

Lime Industry Hg Emissions

- Virtually all TRI Submissions Based on EPA/NLA Emission Factor:
 - 15 lbs Hg/MM tons lime
 - Based on tests of 4 kilns (2 plants):
 - Baghouse equipped preheater & vertical,
 - Scrubber-equipped straight kilns
 - Few Lime plants TRI reports > 25 lbs
- But, Limestone on the Defense

Factors Distinguishing Cement from Lime

- Lime Plants not Located in Geological Belt with History of Geothermal Activity
- Larger Stone Feed
- Lower Operating Temperatures
- Primarily Baghouses
 - Longer Residence Time than ESPs
- Kiln Dust not Reintroduced to Kiln

Project to

Start Characterizing Hg Emissions

- EMI Prepared Hg Sampling/Stack Testing Plan
 - Opportunity to Determine Oxidized vs Elemental Portions of Hg
- Test Drive at Western Lime's Eden Plant
 - Preheater & straight kiln
 - Kilns burn same dolo stone & same fuel (coal)
- Platt Environmental Retained to Conduct Test
 - EMI test observer

Protocol Overview

- Two Components
 - Solids Sampling & Analysis
 - Stack Testing
- Both Components use Ohio Lumex Analyzer
 - Thermal Desorption followed by AA for Hg
- Previous Lime Industry Analyses used Acid Digestion

Solids Sampling

- Four Weeks Preceeding Stack Test
 - WLC collected daily one pound samples of stone, LKD, coal and lime
 - Representativeness is important, esp. LKD & fuel
 - Samples ground w/ hammer mill to ¼ inch
 - Weekly composites
- One Week before Stack Test
 - Sent one weekly composite of stone , LKD, lime & coal to Platt to select suitable concentration of spiked traps

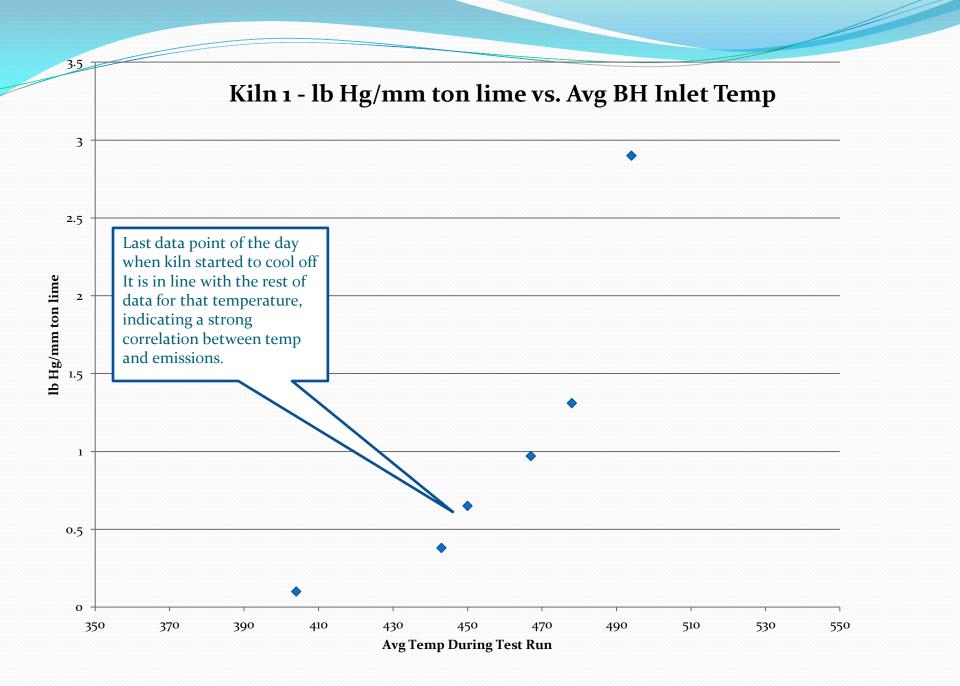
Stack Testing

• EPA Method 30B (Sorbent Trap Method)

- Six one-hour runs
- Paired runs

Concurrent Paired Speciated Testing

Solids Sampling Hg Results


	Average (ppb)	2 Sigma
Stone	0.93	0.3
Lime	0.32	0.4
Coal	34.2	13.2

LKD Sampling Hg Results

	Average (ppb)	2 Sigma
Straight Kiln Pre-test Test day	138 58	<mark>19.3</mark> NA
Preheater Kiln Pre-test Test day	22.6 19.5	3.1 NA

Kiln 1 Stack Test Results

- Straight kiln w/ external heat exchanger
- Hg emitted a function of weather conditions and heat exchanger
 - Cooler inlet to FF = < Hg emitted (next slide)
- Hg retained by system 85% and greater.
 - Less than 3 lb/MM ton lime

Kiln 2 Stack Test Results

- Pre-heater kiln
- Hg retained by system 10% or less:
 - 12-15 lb/MM tons lime
- No gases vented from pre-heater directly to BH
- Baghouse inlet temp steady & much lower than straight rotary (next slide)

Baghouse System Characteristics

	Air-to- Cloth Ratio	Inlet Temp (deg. F)	Bag Type
Kiln 1: Straight w/U-tube Heat Exchanger	1:1 Reverse Air	400 - 494	Fiberglass
Kiln 2: Pre-heater	4:1 Pulse Jet	354 - 364	Membrane

Baghouse Inlet Temperature

- Theory: Lower temperature = more Hg adsorption by LKD
- Observation
 - K1 Hg concentration correlated with BH inlet temp
 - But, K2 inlet temp much lower than kiln 1, and emissions greater than 10 times higher
- Alternate explanation re K1:
 - U-tube acted as Hg sink

LKD Quantity & Composition

	Historic LKD Generation Rate	Unburned Carbon in LKD on April 26-27		Hg in LKD
		%	lb/hr*	ppb (avg)
Straight Kiln	6 to 9%	0.45	7.6	58
Pre-heater Kiln	4 to 4.5%	0.03	0.5	19.5

* Based on 7.5% and 4% LKD generation rate for kilns 1 & 2 respectively

LKD's Role on April 26-27

- Theory: Greater unburned carbon = greater Hg adsorption
- Compared to Kiln 2, the straight kiln had:
 - Twice LKD generation rate
 - 15 times more unburned carbon generated
 - 3 times higher conc. of Hg in the LKD
- Also, straight kiln's residence time twice the pre-heaters kilns

Major Findings

- More than 80% of Hg is elemental
 - both kilns
- Stone type (dolo vs hi-cal) not a factor
- Coal primary source of Hg
 - at least at this site
- Stone's (& lime's) Hg content is negligible
- Less Hg in LKD = More Hg to atmosphere

Unresolved

- Whether the difference in Hg emissions from the two kiln systems is a result of
 - The heat exchanger upfront of the straight kiln
 - The difference in baghouse systems (type & filter media)
 - The difference in LKD generation rate & unburned carbon content

Lessons Learned re:

Solids Sampling

- Preferred approach: off-site analysis of pre-test solids samples
- Coffee grinder can reduce ¼ inch samples to 50 mesh
 - Beware of potential cross contamination of sample types
- Confirmed importance of sequencing solids sampling

More Lessons

- One pound samples needed even though only 100 g needed for Hg analysis
 - Labs require one pound for carbon & chlorine analysis
- Stack testers should bring several ranges of spiked Hg traps to allow for variability in stack concentrations

Protocol Streamlined

- Three (not 6) paired runs, unless first 3 runs highly variable
 - Important to have decision-maker on-site to evaluate real-time results & whether additional runs warranted
- Single (not paired) speciated runs
- Analysis of solids added
 - <u>Unburned</u> Carbon: LKD
 - Chlorine: Stone & fuel

Proposed Next Steps

- This summer, lime MACT major sources to conduct solids sampling component of protocol
 - NLA solids sampling rate available
- Solids sampling instructive regarding:
 - Hg loading to the kilns
 - Hg retention (in LKD)
- Above data useful to identify kilns where stack sampling may be warranted

Next steps (cont'd)

- Stack testing component of protocol suitable for dry APCDs with single stacks
 - If solids sampling results from scrubber & monovent-equipped kilns indicate potential for relatively high emissions, the protocol will be tailored to address these kilns.